当两个粒子处于量子纠缠态时,那么就不能再对它们各自的特性进行单独性的描述——即使我们完美地知晓这个两粒子系统的状态,也无法对其中的某一个的状态做出明确描述。可以说,处于量子纠缠态的粒子是没有单独的性质的,只有共同性质。从数学的角度来看,它们紧密地关联在一起,即使它们处在两个完全不同的地方。
在过去的大多数涉及纠缠粒子的实验中,科学家主要聚焦于如何能尽可能长时间地维持量子纠缠,因为这一点对将量子纠缠应用于量子密码学、量子计算机等领域至关重要。
在新的研究中,研究人员想要探索的是:纠缠在最开始时是如何产生的,以及有哪些物理效应在极短的时间尺度上发挥了作用。
在实验中,他们使用超强的高频激光脉冲来瞄准原子,并观察到当原子被击中时,一个电子会从中射出。如果辐射足够强,
原子中可能还会有第二个受影响的电子——它会转变成一个更高能量的状态,然后以不同的路径绕原子核运行。
研究人员通过使用一种结合了两种不同激光束的测量方法,发现
逃走的电子离开原子的那一刻,与留在原子中的电子状态是相关的
——这两个电子发生了量子纠缠。
然而,逃走的电子的“出逃时刻”是未知的,因为根据量子理论,它存在于不同状态的叠加态中。这意味着,逃走的电子是同时处在一个既更早、又更晚的时间点离开的原子,这与被留下的那个电子的能量状态有关——而这同样是未知的。
实验结果表明,
如果被留下的电子处于更高的能量状态,那么逃走的电子的出逃时间就有可能在一个更早的时间点;如果被留下的电子处于能量较低的状态,那么逃走的电子的出逃时间就可能晚一点,平均约晚232阿秒。
这是一个短到几乎难以想象的时间。然而,这些差异不仅可以通过理论计算出来,还有可能通过实验测量。
这项工作表明,量子纠缠会在极短的时间内发生,而这种时间发展是理解纠缠态如何演变的关键。只有当聚焦这些效应的超短时间尺度时,重要的相关性才会显现出来。
逃走的那个电子并非跳出了原子,而是一种从原子中溢出的波,因此我们可以说这个过程是需要一定时间的
。而正是在这个阶段,纠缠发生了,这种效应可以通过观察两个电子而被精确测量。
这些发现挑战了量子事件是“瞬时发生”的观念,表明仅仅将量子效应看作是“瞬时的”是不够的。