本文提出了一种基于单曝光成像和 NeRF 的 3D 场景重建方法,实现了不依赖任何预训练生成模型的端到端单张图像重建 3D 场景。本文通过大幅度改进 NeRF 训练机制,利用 SCI 图像中隐含的 3D 信息,成功将其中的 3D 场景进行还原,并利用 NeRF 强大的图像渲染能力从场景中渲染高质量、高帧率图像。
>>
加入极市CV技术交流群,走在计算机视觉的最前沿
原文链接:
https://arxiv.org/abs/2403.20018
项目链接:
https://github.com/WU-CVGL/SCINeRF
论文标题:SCINeRF: Neural Radiance Fields from a Snapshot Compressive Image
一、引言
传统的 3D 重建算法需要不同视角拍摄的多张图片作为输入从而重建出 3D 场景。近年来,有相当多的工作尝试从单张图片构建 3D 场景。然而,绝大多数此类工作都依赖生成式模型(如 Stable Diffusion),换句话说,此类工作仍然需要通过预训练的生成式模型推理场景中的 3D 信息。
因此,不依赖任何生成式模型并从单张图片重建整个 3D 场景仍然存在巨大挑战。
本文提出了一种
基于单曝光压缩成像(Snapshot Compressive Imaging, SCI)系统和神经辐射场(NeRF)的三维场景拍摄与重建方法
,首先将多视角图像信息记录到一张压缩图像之中,而后在重建阶段通过一个基于 NeRF 的 3D 重建算法将场景还原。
本文提出了一种基于单曝光成像和 NeRF 的 3D 场景重建方法,实现了不依赖任何预训练生成模型的端到端单张图像重建 3D 场景。本文通过大幅度改进 NeRF 训练机制,利用 SCI 图像中隐含的 3D 信息,成功将其中的 3D 场景进行还原,并利用 NeRF 强大的图像渲染能力从场景中渲染高质量、高帧率图像。
实验结果表明,该方法不仅可以重建高质量 3D 场景,还在传统的 SCI 图像 / 视频还原任务上显著优于已有方法。这为未来在高速 3D 摄像、3D 场景加密与解密、图像与视频信息压缩等领域的应用开辟了新的可能性。