专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  [IR] Large Language ... ·  2 天前  
AIGC开放社区  ·  ChatGPT重磅功能!支持AI ... ·  5 天前  
AIGC开放社区  ·  ChatGPT重磅功能!支持AI ... ·  5 天前  
51好读  ›  专栏  ›  机器学习研究会

【学习】ACL 2017的短文本假新闻检测数据集及论文

机器学习研究会  · 公众号  · AI  · 2017-04-28 23:14

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:王威廉微博

“Liar,Liar Pants on Fire”:
ANew Benchmark Dataset for Fake News Detection

 

William Yang Wang

Department of Computer ScienceUniversity of California, Santa Barbara Santa Barbara, CA 93106 USA [email protected]


Abstract 


Automatic fake news detection is a chal- lenging problem in deception detection, and it has tremendous real-world politi- cal and social impacts. However, statis- tical approaches to combating fake news has been dramatically limited by the lack of labeled benchmark datasets. In this paper, we present LIAR: a new, publicly available dataset for fake news detection. We collected a decade-long, 12.8K man- ually labeled short statements in various contexts from POLITIFACT.COM, which provides detailed analysis report and links to source documents for each case. This dataset can be used for fact-checking re- search as well. Notably, this new dataset is an order of magnitude larger than pre- viously largest public fake news datasets of similar type. Empirically, we investi- gate automatic fake news detection based on surface-level linguistic patterns. We have designed a novel, hybrid convolu- tional neural network to integrate meta- data with text. We show that this hybrid approach can improve a text-only deep learning model. 




ACL 2017的短文本假新闻检测数据集及论文

链接:

https://www.cs.ucsb.edu/~william/papers/acl2017.pdf



“完整内容”请点击【阅读原文】
↓↓↓