专栏名称: 机器学习研究组订阅
连接人工智能技术人才和产业人才的交流平台
目录
相关文章推荐
黄建同学  ·  200页的大模型论文(书?)《Foundat ... ·  昨天  
SEO实战营  ·  AI颠覆SEO:DeepSeek三个月流量暴 ... ·  昨天  
SEO实战营  ·  AI颠覆SEO:DeepSeek三个月流量暴 ... ·  昨天  
爱可可-爱生活  ·  【[11.1k星]Subfinder:快速被 ... ·  3 天前  
爱可可-爱生活  ·  【[37星]Ola:打破多模态边界,实现图像 ... ·  4 天前  
51好读  ›  专栏  ›  机器学习研究组订阅

谷歌员工集体打脸劈柴,25%新代码AI生成夸大事实!Linux之父怒斥90%都是营销

机器学习研究组订阅  · 公众号  · AI  · 2024-11-04 19:02

正文

「谷歌内部超1/4新代码,全是由AI生成的」!
上周,CEO劈柴在Q3财报会议上的一句话,瞬间点燃了全网的激烈讨论。
AI生成的代码再由工程师进行审核,能够帮助工程师完成更多的工作,加快开发效率
然而,也正是这句话,劈柴却遭到了自家员工「打脸」。
在热门新闻网站HK上,一位谷歌程序员发帖,对这个观点并不认同:
我在谷歌刚刚结束了一天的工作,我刚才在写那种称之为「AI生成代码」的东西,但是这个代码补全能力最擅长补全我正在写的代码行。

比如,当我写「function getAc...」时,它足够聪明,可以补全完成「function getActionHandler()」,可能还会建议正确的参数和一个不错的jsdoc注释。

简单来说,它是个有用的生产力工具,但并不能完全进行真正的软件工程设计工作。它可能和Copilot差不多,也许稍差一些。(不过我最近没用过Copilot)
评论区下面一位谷歌员工,更是直言不讳,「这明显就是在夸大事实,他们可能把一些存在了十年的全自动代码审查/Pull Request也算作『AI生成』了」。
如果一个10人团队和一个使用Copilot的8人团队生产力相同,那在我看来可以说「AI替代了2个工程师」。更重要的是,如果这是真的,科技领导者们早就会这样宣称了。

Copilot和类似工具已经存在足够长的时间,足以证明其效果,但没有人说「我们用AI替换了X%的员工」,因此通过「否定后件」的逻辑,使用Copilot并不能实质性地加速开发。
如此戏剧性的反转,让现场吃瓜的网友大受震撼。
就连Linux之父Linus Torvalds在采访中表示,「AI只不过是一种营销策略。人工智能市场状为90%营销和10%现实」。
可以庆幸的是,AI取代程序员工作应该离我们还很遥远。

25%代码AI生成,过度吹捧遭打脸


在所有人看来,25% AI生成代码所占的比例是非常高了。
此外,劈柴在Q3财报讲话中还提到了,不论是从token数量、API调用、业务采用哪个方面去衡量,Gemini模型使用率都处于急剧增长的时期。
除了谷歌自己的平台,Gemini还联手GitHub Copilot,为更多开发者提供能力,支持处理200k上下文的大规模代码库。
实际上,AI编程助手往往会在代码中植入错误,侵犯版权,甚至在某些情况下,导致中断。
这时,程序员被迫成为「AI提示大师」,手动修复AI助手创建的任何问题。
谷歌对AI编码的吹捧,却成为了全网的华点。
有人表示,「问题在于,修复那25%代码中的bug所花费的时间超过了节省下来的时间」。
「现在Copilot这样的工具被广泛使用,研究表明它们实际上并没有提高生产力。所有相反的说法似乎要么是道听途说,要么就是营销噱头」。
另有网友表示,「时间会告诉我们AI输出质量是比熟练的程序员差、相当,还是更好,但对于超出明显的样板代码(比如for循环中需要的所有符号)或命名(如上面那位描述的函数名和注释自动补全)之外的任何建议,我都会非常谨慎」。
与此同时,在Reddit热帖中的网友称,「我认为我们不太关注采用率,而是更关心其他因素。它能提高开发速度吗?能提升代码质量吗?能改进维护性吗?我觉得这些还未可知。
更大的问题是,在大型企业中使用AI的ROI是多少?运行或训练这些AI大模型并不便宜」。
不过,又一位谷歌员工站出来,给了比较中肯的回答。
他首先承认了,AI写代码仅是工程工作的一小部分。
然后依据他个人经验,又认为「不过AI系统要比人们所描述的强大得多,也可能是因为我大多数情况下用C++,它比JavaScript有更大的训练语料。系统已经很擅长的一件事是根据注释写出完整的短函数」。

内部代码模型泄露,专为谷歌员工打造


在谷歌内部,开发者都在用什么模型写代码?
今年2月,BI从一份泄露内部文件中得知,谷歌悄悄推出了一款名为Goose的新模型供内部使用。
Goose是Gemini的一个分支,基于谷歌25年工程专业知识上完成训练,支持28k token上下文。
它不仅可以回答有关谷歌特定技术问题,还能使用颞部技术堆栈编写代码,还支持一些新功能,比如根据自然语言提示编写代码。
一份文件中指出,Goose计划成为谷歌内部编码使用的第一个通用LLM。
而且,谷歌计划是,通过Goose将AI带入产品开发过程的每个阶段。

92%美国码农用AI写代码


用AI辅助代码生成,已经成为大多数程序员的日常。
根据Stack Overflow 2024开发者调查报告称,超76%的人正在使用,或计划在今年开发过程中用上AI工具。其中,62%的人正积极使用AI工具。
上半年发布的GitHub开发者报告中,92%美国软件开发人员已经在工作内/外使用AI编码工具。
AI辅助编码于2021年首次在GitHub Copilot中大规模出现,并在次年6月正式对外发布。
当时,它使用的是OpenAI一个特殊编码的AI模型Codex。
该模型既可建议连续的代码,也可以从英语指令中从头开始创建新的代码。
从那时起,AI编码在全世界铺开。随后加入的玩家,比如Anthropic、Meta、Replit、OpenAI等不断完善解决方案。
最近,GitHub Copilot官宣扩展了新功能。并且,加入了Claude 3.5和Gemini 1.5 Pro模型。
一些人都在吹捧AI编码的强大能力,却也引起了另外一些人的批评。
斯坦福去年的一项研究显示,使用AI编码助手的开发者,代码错误更多。而且,他们比那些不用AI的人,更加相信AI编写了安全的代码。

论文地址:https://arxiv.org/pdf/2211.03622
虽然AI生成错误的编码是危险的,但回看软件开发的历程,也曾遇到过类似有争议的变化。
比如,从汇编语言到高级语言的过渡,在那时,也面临着一些程序员的反对。
他们所担心的是,我们不仅会失去控制,还降低了效率。
类似地,上世纪90年代,面向对象编程的采用,也遭到了复杂性、性能开销大的质疑。
在AI增强编码的最新转变中,也是同样如此。
微软前副总Steven Sinofsky表示,「无论你认为用AI编程在今天是否有效,都不重要」。
「但是,如果你认为GenAI编码会让人类变笨,或不是真正的编程,那么请考虑一下,这类批评其实一直都在(从最早的Fortran编程语言就开始了)」。






请到「今天看啥」查看全文