[1] Kaufmann E, Bauersfeld L, Loquercio A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620(7976): 982-987.
[2]
Guan Y, Ren Y, Sun Q, et al. Integrated decision and control: Toward interpretable and computationally efficient driving intelligence[J]. IEEE transactions on cybernetics, 2022, 53(2): 859-873.
[3] Chen R T Q, Rubanova Y, Bettencourt J, et al. Neural ordinary differential equations[J]. Advances in neural information processing systems, 2018, 31.
[4] Lechner M, Hasani R, Amini A, et al. Neural circuit policies enabling auditable autonomy[J]. Nature Machine Intelligence, 2020, 2(10): 642-652.
[5] Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 2021.
[6] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In Intelligent Robots and Systems, 2012.
[7] Song X, Duan J, Wang W, et al. LipsNet: A smooth and robust neural network with adaptive Lipschitz constant for high accuracy optimal control[C]//International Conference on Machine Learning. PMLR, 2023: 32253-32272.
[8] Hasani R, Lechner M, Amini A, et al. Liquid time-constant networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(9): 7657-7666.