不变因果预测(Invariant causal prediction)(Kook et al., 2024)
双重有效/双重尖锐(Doubly-Valid/Doubly-Sharp)、敏感性分析(Dorn et al.,2024)
基于模型辅助的敏感性分析(Tan,2024)
排他性检验(Goldsmith et al.,2022)
平行趋势检验
传统平行趋势检验
Event Study(Freyaldenhoven et al.,2021;Roth,2022)
Treeffuser(Beltran-Velezet al.,2024)
安慰剂检验
DID的新范式
TWFE与标准DID(Wooldridge, 2021)
纽曼正交框架下的DID(包括TWFE,DRDID,DML,GRF, Npcausal)(Sant & Zhao,2020;Kennedy et al.,2023)
匹配框架下的DID(包括:PSM-DID,SDID,WGAN)(Athey et al.,2021)
多期DID(包括:CSDID,动态IPW,RIPW)(Arkhangelsky et al.,2021;Callaway & Sant,2021;Goodman-Bacon,2021;van den Berg & Gerard,2022)
参考文献
:
以下是处理后的完整引文信息:
Boileau, P., Leng, N., Hejazi, N. S., Van Der Laan, M., & Dudoit, S. (2024). A nonparametric framework for treatment effect modifier discovery in high dimensions. Journal of the Royal Statistical Society Series B: Statistical Methodology. Link, PDF, Google.
Beltran-Velez, N., Grande, A. A., Nazaret, A., Kucukelbir, A., & Blei, D. (2024). Treeffuser: Probabilistic Predictions via Conditional Diffusions with Gradient-Boosted Trees (Version 2). arXiv. Link (rep), PDF, Google.
Chang, H., Middleton, J. A., & Aronow, P. M. (2024). Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials. Econometrica, 92(5), 1503–1519. Link (rep), PDF, Google.
Di Giuli, A., & Laux, P. A. (2022). The effect of media-linked directors on financing and external governance. Journal of Financial Economics, 145(2), 103–131. Link (rep), PDF, Google.
Dorn, J., Guo, K., & Kallus, N. (2024). Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding. Journal of the American Statistical Association, 1–12. Link, PDF, Google.
Guo, X., Li, R., Liu, J., & Zeng, M., 2022. High-Dimensional Mediation Analysis for Selecting DNA Methylation Loci Mediating Childhood Trauma and Cortisol Stress Reactivity.
Journal of the American Statistical Association
, 117(539), 1110-1121. Link, PDF, Google.
Guo, Z., Ćevid, D., & Bühlmann, P.,2022. Doubly debiased lasso: High-dimensional inference under hidden confounding.
Annals of Statistics
, 50(3), 1320.Link, PDF, Google.
Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects.
Statistical Science
, 25(1), 51-71. Link, PDF, Google.
Kook, L., Saengkyongam, S., Lundborg, A. R., Hothorn, T., & Peters, J. (2024). Model-Based Causal Feature Selection for General Response Types. Journal of the American Statistical Association, 1–12. Link, PDF, -PDF2-, Google.
Lin, Y., Windmeijer, F., Song, X., & Fan, Q. (2024). On the instrumental variable estimation with many weak and invalid instruments.
Journal of the Royal Statistical Society Series B: Statistical Methodology
, qkae025. Link, PDF, Google.
Ouyang, J., Tan, K. M., & Xu, G. (2023). High-dimensional inference for generalized linear models with hidden confounding.
The Journal of Machine Learning Research
, 24(1), 14030-14090. Link, PDF, Google.
Zhou, X. (2022). Semiparametric Estimation for Causal Mediation Analysis with Multiple Causally Ordered Mediators. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(3), 794–821. Link, PDF, Google.
Zhou, X., & Yamamoto, T., 2023. Tracing causal paths from experimental and observational data.
The Journal of Politics
, 85(1), 250-265.Link (rep), PDF, Appendix, Google.
传统检验方法的可行性分析:逐步检验法、敏感性分析(Imai et al.,2010)、两阶段工具变量法(Di Giuli & Laux,2022)
双重纠偏拉索估计:线性模型(Guo et al.,2022AoS),广义线性模型(Ouyang et al.,2023)
多重中介检验
有效中介识别检验(Guo et al.,2022JASA)
因果路径分析(Zhou,2022;Zhou & Yamamoto,2023)
连续型处理变量下的中介效应分析(Lin et al.,2024)
参考文献
:
Boileau, P., Leng, N., Hejazi,N. S., van der Laan, M., & Dudoit, S. 2024. A nonparametric framework fortreatment effect modifier discovery in high dimensions.
Journal of the RoyalStatistical Society Series B: Statistical Methodology
, qkae084.
Chang, H., Middleton, J. A.,& Aronow, P. M. 2024. Exact bias correction for linear adjustment ofrandomized controlled trials.
Econometrica
, 92(5), 1503-1519.
Di Giuli, A., & Laux, P. A., 2022. The effect of media-linked directors on financing and external governance.
Journal of Financial Economics
, 145(2), 103-131.Link (rep), PDF, Google
Guo, X., Li, R., Liu, J., & Zeng, M., 2022. High-Dimensional Mediation Analysis for Selecting DNA Methylation Loci Mediating Childhood Trauma and Cortisol Stress Reactivity.
Journal of the American Statistical Association
, 117(539), 1110-1121. Link, PDF, Google.
Guo, Z., Ćevid, D., & Bühlmann, P.,2022. Doubly debiased lasso: High-dimensional inference under hidden confounding.
Annals of Statistics
, 50(3), 1320.Link, PDF, Google.
Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects.
Statistical Science
, 25(1), 51-71. Link, PDF, Google.
Lin, Y., Windmeijer, F., Song, X., & Fan, Q. (2024). On the instrumental variable estimation with many weak and invalid instruments.
Journal of the Royal Statistical Society Series B: Statistical Methodology
, qkae025. Link, PDF, Google.
Ouyang, J., Tan, K. M., & Xu, G. (2023). High-dimensional inference for generalized linear models with hidden confounding.
The Journal of Machine Learning Research
, 24(1), 14030-14090. Link, PDF, Google.
Zhou, X. (2022). Semiparametric Estimation for Causal Mediation Analysis with Multiple Causally Ordered Mediators. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(3), 794–821. Link, PDF, Google.
Zhou, X., & Yamamoto, T., 2023. Tracing causal paths from experimental and observational data.
The Journal of Politics
, 85(1), 250-265.Link (rep), PDF, Appendix, Google.
Xu, W., & Tan, Z. (2024). High-dimensional model-assisted inference for treatment effects with multi-valued treatments. Journal of Econometrics, 244(1), 105852. Link, PDF, Google.