虽然大部分研发团队都更喜欢谈论预训练,但实际上模型的效果主要取决于后训练阶段,也是最耗费时间精力的地方。
Meta团队扩大了人工标注SFT数据的规模(1000万),将GPU数量也扩大到了数万个,还采用了诸如拒绝采样、PPO、DPO等技术来尝试在这些模型的可用性、人类特征以及预训练中的大规模数据之间找到平衡。
增强模型的安全性
模型在实用性和安全性之间,必须要进行取舍:Meta团队尝试提高模型的实用性,包括多用途、回答问题的能力、事实上的准确性等,但也需要在安全性方面进行权衡,理解模型在面对诸如完整性类型提示词等情况时的反应。
红队测试在安全领域中也是非常重要的,Meta团队投入了大量的时间,但挑战和标准一直在变化,关于红队看法也在不断改变。
Meta在未来的研究方向是开发出紫色的Llama(融合了红色和蓝色),即红队和蓝队,也就是攻击方和防御方,开发团队从网络安全领域借鉴了命名方式,也是内部网络安全/生成式AI团队的一位科学家提出的。
研究人员希望最大化模型的价值,也体现出了一种独特思维方式:在Llama 2 项目中,Meta构建了非常安全的模型,在模型本身包括微调等方面投入了非常多,但模型经常会过度拒绝某些内容,表现得「过于安全」,虽然可以保证制作的模型非常安全,但同时,研发团队也希望能有一些灵
活性,包括输入和输出
的保护措施,让用户可以根据需要定制使用方式。
从宏观的角度来看,可以将这个过程看作一个工作流,用户的使用情况会影响到模型的设计和训练:首先需要准备数据来训练模型,然后针对可能导致的不同的风险进行评估。如果发现了一些不理想的地方,再进一步微调模型或采取措施来减轻这些问题。
最后可以将模型部署到如推理阶段,进行提示过滤等工作,涉及到像Llama Guard和Code Shield类似的工具。
团队在去年12月发布的网络安全防护系统Cybersec Eval现在已经进入了第二个版本,功能有了显著的扩展,并且全部开源:可以对提示注入、自动防护冒犯性内容、滥用代码解释器等攻击进行识别。
从结果来看,Llama 3 8B的性能非常出色,在拒绝率和违规率之间都达到了理想的位置;而70B模型更连贯、更聪明,可以发现:模型越强大,违规的可能性就越大,就需要采取缓解措施。
相比之下,Code Llama 70B的拒绝率相当高,可能会让用户感到困扰,也是团队计划在下一代模型中改正的问题。
下面这个图表展现了模型在对抗提示词注入攻击的表现,如重复Token攻击、说服攻击、虚拟化攻击等。
去年12月,团队发布了 Llama Guard v1,基于 Llama 2 7B,在亚马逊SageMake
r、Together等
多个平台上部署过,包括
Databricks
,类似于内容审查 API,但用户可以自由定制,而且免费。
最
近发布的Llama
Guard 2基于 Llama 3,在基准测试中,与GPT-4还是其他一些API相比,该模型都更强,并且公开可用。
Code Shield基本是一个在模型推理过程中用于网络安全的输入输出保护工具,可以过滤大语言模型生成的不安全代码,如过滤「生成网络钓鱼攻击代码」等
许可证
Llama 3在许可证方面没有什么大的变化,可以用于研究和商业用途,可以直接使用,也可以创造一些衍生品,但有一个关于700万每月活
跃用户的规定,
如果是一个非常大规模的公司来用,需要和Meta进行合作。
开发团队还为品牌制定了一些指导方针,因为有很多公司想要使用Llama,所以需要正确地标示品牌,这些也被写进了许可证。
生态系统
Llama相关的公司非常多,包括硬件供应商,如Nvidia、Intel和Qualcomm,还有各种下游企业和平台提供商。
Llama还有一个庞大的开源社区,开发团队与GGML团队等也有着密切的合作关系,还包括Yarn项目(能够扩展上下文长度)等各式各样的相关开源项目。
其他亮点
torchtune是一个纯粹的PyTorch微调库,可以很容易地对LLM进行微调,没有各种依赖项,支持Llama 3,目前已经与
HuggingFace
和其他一些库进行了集成。
Github上还有一些Llama 3和Llama的相关资料,有很多入门笔记,
LangChain
、RAG、提示工程等。
Meta团队也正在训练一个更大的模型Llama 3 400B+,目前只是抓取了4月15日的checkpoint进行了微调后对比:MMLU达到了86.1,GSM-8K达到了 94.1
Llama 3之后
团队想要推出更大更好的模型,支持多种语言:Facebook(FOA)的家庭应用程序已经覆盖了近40亿的用户,多语言对于Llama目标实现的AI场景,以及多模态功能都至关重要,包括在
Ray-Ban
智能眼镜上实现AI,需要理解周围的一切,不可能仅仅通过文字来实现,所以多模态功能在未来肯定也会推出。
最后,Meta也承诺将持续关注安全问题,将继续开源所有的安全措施,并围绕这些措施建立社区,确保安全性的标准化,并表示一定会坚持下去!