-
痛点1:存储浪费大。数据以文件方式分发到各个下游系统,均需要占用业务库宝贵的存储资源,尤其是通用场景数据(例如用户画像标签等),重复的资源浪费尤为突出,亟需集中化的存储和服务支撑,体现在架构选型上,即需要“云化的异构存储能力”支撑;
-
痛点2:传递效率低。文件式数据传递链路以T+1批量为主,数据需要“一股脑”全部加载进本地应用库后方可使用,数据获取的效率远低于通过服务“按需”调用获取指定内容(例如指定客户信息、指定机构指标),数据中台为了支持前端各具业务特色的数据应用场景,需要借助“微服务”解耦和组装;
-
痛点3:人力投入大。虽然每个业务前端系统只维持一个小规模的数据团队,但银行前端业务系统众多,整体投入不容忽视。这部分工作收归沉淀在数据中台后,为了继续保持对各业务场景迭代诉求的快速响应、同时确保数据中台不会被突增的繁复工作压垮,就需要考虑通过技术手段降本增效,提升持续交付能力。体现在技术诉求上,就是需要“云化的部署运营能力”支撑;
-
痛点4:管控力度弱。文件式的数据应用方式,文件传送出去后,缺少有效的管控手段,无法准确回答数据使用场景、使用频次等问题,数据的价值难以量化评估,这就要求数据中台建设时除了技术架构考量外,需要同等注重“云化的协作管理能力”建设。