专栏名称: ioncology
《肿瘤瞭望》于2014年初创刊,由著名肿瘤科专家徐兵河教授担任总编辑,以“同步传真国际肿瘤进展”为办刊宗旨,以循证医学理念为指导思想,采用全媒体组合报道模式,致力于为国内广大肿瘤临床、教研人员搭建一座与国际接轨的桥梁。
目录
相关文章推荐
阑夕  ·  ? 阑夕的微博视频 -20250312200932 ·  10 小时前  
纯银V  ·  我 2019 ... ·  16 小时前  
界面新闻  ·  盘中大涨超15%!老铺黄金总市值突破1300亿港元 ·  20 小时前  
界面新闻  ·  DeepSeek R2发布?回应来了 ·  昨天  
槽边往事  ·  彩虹的教授 ·  2 天前  
51好读  ›  专栏  ›  ioncology

抗体偶联药物的中枢神经系统药理学活性

ioncology  · 公众号  ·  · 2024-12-05 19:50

正文


点击上方蓝字 关注我们



抗体偶联药物(ADCs)通过将单克隆抗体与细胞毒素药物结合,针对特定肿瘤相关抗原,实现对癌细胞的精准打击。T-DM1、T-DXd、SG等不同靶点的ADCs在乳腺癌脑转移治疗中展现了积极的颅内和颅外抗肿瘤活性,但总体上ADCs在脑肿瘤治疗领域的研究和应用仍相对有限,尤其是对ADCs在中枢神经系统(CNS)中的药理学特征理解尚不深入。Mair MJ等人发表在《Nature Reviews Clinical Oncology》上的综述,深入介绍了ADCs对原发性和继发性脑肿瘤治疗活性的理解和进展,本文主要节选ADCs中枢神经系统的药理学活性和未来研发方向的章节。


ADCs中枢神经系统的药理学活性

中枢神经系统(CNS)的药理学活性是理解ADCs在脑肿瘤治疗中效果的关键。血脑屏障(BBB)和血肿瘤屏障(BTB)的存在,是药物递送到脑内的重要障碍。BBB由紧密连接的内皮细胞组成,这些细胞限制了大分子如抗体和ADCs的通透性。在生理状态下,抗体在脑中的浓度通常低于血浆中的0.01%。然而, 在脑肿瘤中,BBB的完整性可能会被破坏,导致其通透性增加。这种破坏可能是由于肿瘤微环境的变化,包括肿瘤细胞对周围组织的压迫和炎症反应,以及肿瘤新生血管的形成。

ADCs的CNS活性受到连接子设计、载荷选择以及药物与抗体比例(DAR)的影响。连接子包括可裂解的或不可裂解的,其设计决定了药物在肿瘤细胞内的释放方式。可裂解连接子在肿瘤细胞内的酸性环境中或通过酶的作用下释放药物,而非裂解连接子则在细胞内完全降解后释放药物。 理想的连接子设计应确保药物在血液循环中稳定,而在肿瘤细胞内有效释放,以减少非靶向效应和系统性毒性。

载荷的化学和药理属性对ADC的活性至关重要。作为ADC载荷的药物通常具有高亲和力,其半抑制浓度(IC50)在亚纳摩尔范围内,这使得它们不适合以游离形式系统给药。 理想的载荷应具有适当的亲水性,以增加ADC在循环中的稳定性和半衰期,但在解除偶联后应具有足够的亲脂性,以增强膜通透性和旁观者效应。 然而,关于ADC载荷在细胞内尤其在CNS肿瘤细胞内的浓度数据有限。

DAR是影响ADC效力和剂量的另一个关键因素。 高DAR通常增加了ADC的效力,因为更多活性分子在细胞内释放,但高DAR也可能影响患者的最大耐受剂量并加速ADC的血浆清除,从而可能降低临床耐受性和疗效。 因此,优化DAR、连接子设计和载荷对于最大化ADC的CNS活性至关重要。此外, ABC(ATP-binding cassette,三磷酸腺苷结合盒)转运蛋白在BBB和BTB中的表达,可能会通过主动排出机制减少药物在CNS中的积累。 因此,设计不与ABC转运蛋白相互作用的载荷,可能有助于提高ADCs在脑肿瘤中的疗效。

图1. 影响ADCs在中枢神经系统中递送和活性的参数。a. 血脑屏障(BBB),由紧密连接的毛细血管内皮细胞以及可以收缩的星形胶质细胞足突组成,这些在异常的“血肿瘤屏障”(BTB)中可能会收缩。b. ADCs与肿瘤细胞相关表位结合,随后内化,在溶酶体中降解并释放细胞毒素有效载荷。释放的有效载荷可以根据其亲脂性扩散到邻近的不表达抗体靶表位的细胞,产生“旁观者效应”。高药物抗体比例(DAR)与低DAR对有效载荷浓度和扩散的影响。c. ADC组分的分子特性决定其在颅内的效力和耐受性。d. 旨在克服BBB和/或BTB的物理、化学和分子方法,从而增加包括ADC在内的药物在颅内的递送


未来方向

未来的研究方向需要解决如何提高ADCs在CNS中的递送效率。 一种方法是通过物理手段,如激光间质热疗(LITT)和微泡辅助聚焦超声(FUS) ,这些方法已被证明可以暂时性地破坏BBB,增加药物在脑内的积累。LITT通过激光产生的热效应破坏肿瘤周围的BBB,而FUS则利用微泡和超声波的协同作用打开BBB。这些技术的成功应用为ADCs等大分子药物的脑内递送提供了新的可能性。

化学方法包括开发新的连接子技术和优化载荷的化学结构 ,以提高其穿透BBB的能力。例如,通过改变药物的亲脂性,可以增加其通过BBB的能力,同时减少其被ABC转运蛋白泵出脑外的风险。







请到「今天看啥」查看全文