专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
51好读  ›  专栏  ›  机器学习研究会

【推荐】机器学习工程师成才指南

机器学习研究会  · 公众号  · AI  · 2017-08-21 22:35

正文

请到「今天看啥」查看全文




点击上方 “机器学习研究会” 可以订阅
摘要

转自:爱可可-爱生活

We will walk you through all the aspects of machine learning from simple linear regressions to the latest neural networks, and you will learn not only how to use them but also how to build them from scratch.

Big part of this path is oriented on Computer Vision(CV), because it’s the fastest way to get general knowledge, and the experience from CV can be simply transferred to any ML area.

We will use TensorFlow as a ML framework, as it is the most promising and production ready.

Learning will be better if you work on theoretical and practical materials at the same time to get practical experience on the learned material.

Also if you want to compete with other people solving real life problems I would recommend you to register on Kaggle, as it could be a good addition to your resume.

Requirement:
Python. You don’t have to be a guru, the basic knowledge will be just fine. For anything else there are manuals)

1. Courses:

1.1 Practical Machine Learning by Johns Hopkins University

1.2 Machine Learning by Stanford University
These first two will teach you the basic things about Data Science and machine learning and will prepare you for a real hard stuff)

1.3 CS231n: Convolutional Neural Networks for Visual Recognition 2017(2016)
That’s where the party’s starting, it’s one of the best courses that you can find on the Internet about ML & CV. It will not only show you how deep is the rabbit hole, but also will give you good base for further investigation.

1.4* Deep Learning by Google
Optional course. You can take only practical part from it.

1.5* CS224d: Deep Learning for Natural Language Processing
Optional course for those who want to work with Natural Language Processing. And yeah, it is also great)

1.6* Deep Learning book
Good handbook which covers many aspects of ML

2. Practical part:

This list consist of many tutorials and projects, that you should try, understand how they work, and think how you can improve them. This list is created to increase your expertise and interest in ML, so don’t be afraid if some of the tasks are hard for you, you can come back to them when you are ready.

2.1. Simple practical course on Tensorflow from Kadenze
2.1. Tensorflow cookbook
2.2. Tensorflow-101 tutorial set

2.3. Fast Style Transfer Network
This will show how you can use neural network to transfer styles from famous paintings to any photo.

2.4 Image segmentation

2.5 Object detection with SSD
One of the fastest (and also simpler) models for object detection.

2.6 Fast Mask RCNN for object detection and segmentation

2.7 Reinforcement learning
Very useful thing especially if you want to build a robot or the next Dota AI :)

2.8. Magenta project from Google Brain team
Project that aims to creating compelling art and music with the help of neural networks. And the results are remarkable.

2.9 Deep Bilateral Learning for Real-Time Image Enhancement
New awesome algorithm of the photo enhancement from Google

2.10 Self driving-car project
Want to make your car fully automatic? — that’s a good starting point.

3. FAQ

What to do if you are stuck?
First, you must understand that ML it’s not something that 100% precise — most of the cases are just a good guess and tons of tuning iterations. So to come up with some unique idea is very hard in most cases, because of the time and resources you will spend on training the model. So don’t try to figure out solution by yourself — search for papers, projects, people that can help you. The faster you get experience, the better.
Some websites that can help you: http://www.gitxiv.com/, http://www.arxiv-sanity.com/, https://arxiv.org/, https://stackoverflow.com



链接:

https://hackernoon.com/learning-path-for-machine-learning-engineer-a7d5dc9de4a4


原文链接:

https://m.weibo.cn/1402400261/4142895751518465

“完整内容”请点击【阅读原文】
↓↓↓






请到「今天看啥」查看全文