专栏名称: 新智元
智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。
目录
相关文章推荐
机器之心  ·  实测昆仑万维对话AI「Skyo」,会读诗、知 ... ·  2 天前  
人工智能那点事  ·  包月高达3万元!陪聊、哄睡流行,“情绪消费” ... ·  4 天前  
爱可可-爱生活  ·  [CL]《Does your LLM ... ·  4 天前  
智先生  ·  裁员了,很严重,大家做好准备吧! ·  5 天前  
智先生  ·  裁员了,很严重,大家做好准备吧! ·  5 天前  
51好读  ›  专栏  ›  新智元

沈向洋无惧BAT逼宫:微软培养了中国几乎所有 IT 公司的CTO,5000人撑起AI四大方向 | 新智元专访

新智元  · 公众号  · AI  · 2017-05-12 12:56

正文


 新智元报道  

作者:闻菲

新智元启动 2017 最新一轮大招聘: COO、总编、主笔、运营总监、视觉总监等8大职位全面开放

新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和奖金。加盟新智元,与人工智能业界领袖携手改变世界。

简历投递:j[email protected]    HR 微信:13552313024



【新智元导读】 微软全球执行副总裁、微软人工智能及微软研究事业部负责人沈向洋博士(Harry Shum)在 Build 大会发表主旨演讲后,接受了包括新智元在内的几家受邀媒体的采访。他在采访中谈到了微软的 AI 人才流失问题,对腾讯等公司到西雅图招揽AI人才进行了回应。同时,作为微软去年整合的 5000 AI 人才军团的负责人,沈向洋谈到了他们的四个主要发力方向。最后,有记者问到,陆奇去了百度,微软还会跟百度合作吗?来看看沈向洋的答案。

 


2017年05月10日,微软全球执行副总裁、微软人工智能及微软研究事业部负责人沈向洋博士(Harry Shum)在微软全球开发者大会(Build)发表主旨演讲后,接受了包括新智元在内的几家受邀媒体的采访。


采访中,沈向洋博士认为Cortana代表了AI的未来,他多次提到Conversational AI,也即对话式AI。在他看来,智能语音市场远远没有饱和,各大巨头都在做智能语音助理,正表明这是一个正确的方向,而在亚马逊Alexa/Echo,谷歌Google Home等先入产品面前,微软的机会仍然有很多。微软将利用小娜、小冰的优势,从语音方面发力。


所不同的是,沈向洋提到,他认为“AI对人类情感的理解将会是非常了不起的一件事大多数的人还没有认识到能够不断聊下去这件事情的重要性。而在这一点上,微软的小冰遥遥领先于其他智能语音助理,平均多轮对话次数是目前业界最高的23次。不过,沈向洋也表示,微软的Conversational AI两条腿走路,既要发挥Cortana的商务助理优势,也要充分挖掘小冰在情感聊天方面的优势。


当被新智元问及去年微软组建的5000人规模AI团队的具体组织架构时,沈向洋并没有直接回答。但他表示,搜索引擎、以Cortana为代表的智能语音助理、用AI帮助微软现有产品转型,以及用AI开发全新的产品线,是当前微软AI团队主要发力的4个方向。尤其是最后一点,沈向洋坚信,AI将颠覆所有的商业应用,那么在这其中,决定去做什么、不去做什么,是微软AI当前最重要的事情。


至于关注度很高的微软AI人才流失,沈向洋似乎对此并不是太担心,他告诉新智元:“我觉得人才流动非常正常,一个大公司培养了很多的人才,最重要的是一个公司你要知道你存在的价值和理念,这体现在优秀的员工为什么会选择留在你这里,不光是你到外面挖人,你给在这里员工提供什么样非常了不起的环境,让他在这里面有非常好的发展。”对于其他公司来微软“挖角”,沈向洋反而感到非常自豪,认为体现了微软为中国AI乃至整个IT行业培养了优秀的人才。


沈向洋还表示,在去年微软重组构建5000人规模AI团队后,他就成立了一个“微软人工智能学院”,培养相当一批微软内部人才,“我们希望通过这样的方式,可以吸引更多外面的人才来微软。这么做,并不是我们担心又有人挖我们AI的人才,更重要的是,要把我们的人才培养成‘AI capable’。”


接下来,在回答其他媒体记者提问时,沈向洋表示,未来10年左右,计算机视觉可以识别一切。他认为未来3到5年,垂直领域AI将有所发展,看好toB的业务,而未来5到10年,他认为“可解释的AI”是一个非常值得研究的方向,这方面肯定会有重要突破。此外,沈向洋还表示,认知计算将成为Azure的“重中之重”,看来在智能云(Intelligent Cloud)方面,谷歌与微软也势必有精彩的角逐。


采访中,沈向洋提到他非常享受做研究的过程,可惜他“后来被鲍尔默赶出来去做产品”。此外,沈向洋认为“可以从安卓兴起的过程当中学习很多东西,深度学习下一波浪潮当中怎么样可以做的更好,我不觉得微软一家公司可以把这些东西都做出来。”


新智元专访沈向洋:如何回应腾讯等公司争抢微软AI人才?


新智元:有一个问题,微软怎么应对人才流失?说实话,像腾讯已经把研究院开到西雅图了。


沈向洋博士:上次我跟马化腾讲,我说你太不像话了,把研究院开到我们门口了。小马哥还有点不好意思,还有点腼腆。我觉得人才流动非常正常,一个大公司培养了很多的人才,最重要的还是说任何一个公司你要知道你存在的价值和理念,这体现到优秀的员工为什么会选择留在你这里,不光是你到外面挖人,你给在这里的员工提供什么样非常了不起的环境,让他在这里面有非常好的发展。你去问问腾讯,腾讯的人才也在不断流失,腾讯以前没有AI的人才,所以他必须就要去挖人,去百度挖也好,去别的地方挖也好,都很正常。大家到西雅图开研究院,对西雅图本地经济太好了。在中国还出去招商,把人拉过来,像微软、亚马逊或者到其他的大公司,我们也有责任把西雅图本地经济带动起来。


新智元:就像您刚才说的一样,如何要留住AI人才,就是这个公司的实力了。不过,从现在的新闻来看,从微软研究院出去的人很多。


沈向洋博士:对,我上次在乌镇,跟刘云山书记报告的时候,跟大家说微软公司在中国,为中国IT产业培养了无数的优秀人才,我说你不仅要看到中国几乎所有IT公司的CTO都是我培养的,从联想到海尔到小公司,我说你更加要看到微软研究院在过去18年,培养了5000个学生,那些才是真正了不起的,新一代的创业公司出来——现在可能不会是这样的情况——当时计算机视觉、AI公司刚起来的时候,那些投资人来问我一些情况,我说你不要跟我讲,在中国开计算机视觉的公司,要么是我的学生开的,要么是我的学生的学生开的,这都非常光荣的事情。回过头来看,微软研究院、微软公司对中国的IT发展,很多方面都起了巨大的正面作用,特别是为中国培养了非常多的一流人才。


新智元:那您现在也觉得微软继续对外输出人才也是很自豪的?


沈向洋博士:我们一直觉得非常自豪,微软研究院一直觉得非常自豪。我们培养了李开复,我们培养了张亚勤,我们培养了赵峰、我们培养了芮勇,芮勇还是我学弟,这些都非常好,我们都觉得非常光荣。


新智元:接下来继续有高级的研究员离职的话,你们仍然觉得很光荣?


沈向洋博士:你具体应该去问问那些离开的人,他们是不是还是研究员,你听懂我的意思啊?你问问他们最近研究了什么,叫他写个算法给你看一看。


我再补充一下,微软最近在做一件非常重要的事情,就是人才方面的。6个月前我率领的AI这个部门组建后不久,我就成立了一个“微软人工智能学院”,培养相当一批微软内部人才,我们希望通过这样的方式,可以吸引更多外面的人才来微软。这么做,并不是我们担心又有人挖我们AI的人才,更重要的是,要把我们的人才培养成“AI capable”,所以我们就有一字头的课、二字头的课、三字头的课,一直到六字头的课,类似研究生这样的课。我最近刚刚做完一期AI 611这门课,专门做hands-on project,深度学习具体项目。有10个项目,非常了不起,他们这门课结束的时候,我专门用了2小时去听了他们的报告,非常好!所以,我们现在就是在不断培养AI的人才,既包括内部的人才培养,也包括吸引外面的人才参加。


在LinkedIn发布的全球和中国科技企业最佳雇主的排名上,微软在全球排名第二,仅次于谷歌。但是在中国,微软超越了谷歌,成为最佳雇主。详细情况参见新智元公众号的二条报道:《LinkedIn 技术VP王迪专访 | 全球AI人才聚集,Top10 中美公司排行榜》。


微软5000人 AI 军团:发力搜索、Cortana等四大方向


新智元:微软去年做了重组,您率领一个5000人规模的AI团队,但是对具体的组织架构,我们一直都没有太多的了解,希望您能在这方面介绍一下,这5000人的团队具体的侧重点、方向、人事架构是怎么样的。我相信5000人还是分布在世界各地吧,这时候你们采取怎样的联系方式?


沈向洋博士:我们通常都不会对外部讲具体的架构和人事,内部当然任何一个单位都有一个组织架构。不过,我可以简单跟你讲一下,微软发展AI主要还是在4个方面。

    

第一,搜索引擎方面。你可以同意,也可以不同意我的意见,那就是今天世界上最大的人工智能可能还是搜索引擎,微软Bing这么多年下来做了知识图谱,超过25亿的实体(entities)。这里面就有很多的知识,搜索引擎本身不仅仅是一个业务——当然现在Bing也很赚钱,我们在美国占22.6%的搜索市场份额,再加上雅虎的11%(后台技术是微软做的),所以我们在美国有1/3的搜索份额,在英国最近涨到16.5%。从AI的角度来讲,搜索引擎主要就是World Knowledge——对世界知识的积累。

    

第二,非常非常重要的一件事情就是Cortana,这是一个私人的智能数字助理,我觉得Cortana代表了AI的未来,对人的了解。要做好AI需要三个方面的知识,一个是你对世界的理解,一个是你对工作的了解,一个是你对用户的了解,这三件事情在一起的话,才可以做得非常好。我觉得小娜在朝着这个方向走,要去做这个事情当然要有很大的投入在里面。

    

第三,其他的公司和微软一起合作,怎么样令AI 帮助微软(所有产品的)转型。我刚才提到Office,也提到Cloud,也提到Windows,我们一起做。同时,我们把这样的一些技术拿出来给其他所有Microsoft开发者去做,比如认知服务(Cognitive Service),这也是我在演讲的重点。认知服务这么多年一直都是我们AI部门在做,其中有很多的技术是从微软研究院做出来的。

    

第四,也是我自己觉得非常激动的一点,我在主旨演讲的最后稍微提了一下,没有机会展开讲,那就是Every Business App is going to be Disrupted by AI——“所有的商业应用都会被AI颠覆”。所以,我们微软正在这里面选择哪些方向,哪些商业的AI机会我们会去挖掘,希望能够在不久的将来有机会跟大家再分享这边的进展。


新智元:目前这些方向还是在探讨阶段中吗?


沈向洋博士:我们已经做了很多的产品原型,甚至很多的产品和服务已经有很多人在用了。我在我的演讲中也提到,从销售到市场到售后,这些我们都有在做。


对话式AI:微软有一些不同看法


新智元:现在有很多公司都将Conversation AI作为一个入口,但也有人认为对话是一个伪需求。从刚才您的介绍当中,我是否可以这样理解,微软跟其他公司所不同的,是微软的对话平台是从情感这个角度去切入?


沈向洋博士:微软不仅从帮助你完成任务的角度,微软同时也非常关注情感方面的研发,我觉得我们是两条路同时在走,我们小娜是帮助你,你有什么事情,我帮助你找到需要的问题,同时我们小冰更加是从情感的角度,陪你聊天,试图理解你,跟你不断对话。这里面大家的设计理念是非常的不一样,比如你要帮人完成任务,你希望越快越好,你要陪人聊天的话,你要能够聊越久越好,这两件事情从产品和设计上是非常不一样的。

    

大多数的人还没有认识到能够不断聊下去这件事情的重要性,我给你讲一个数字,大家都不见得知道。一个人一天讲几句话?事实上,人一天可以讲6000句以上,你可能都没有认识到这一点。为什么人要不断讲话,这绝对不会是因为要完成一件事情,它是人类自身学习的过程,通过对话、通过交流,跟不同的人学到不一样的东西,这一点是微软做AI,特别是对话式的AI,非常注重的一点,其他的公司不见得都很注重。



当前微软AI最重要的事情:决定做什么和不做什么


以下是专访现场沈向洋博士回答其他记者提问的实录。

 

问:微软全力投入AI,您的部门会继续扩编吗?


沈向洋博士:你这个问题要问我们CEO(笑),我觉得一定会的。


问:接下来的首要任务是什么,有没有一个发展的进程,比如短期和长期的规划?


沈向洋博士:是有的。任何一个企业,一个单位,特别是大了以后,一定要去想短期的目标是什么,中期的希望是什么,长期的愿景是什么,一定要从这个角度去想。我的部门比较特别的地方就是,我除了 AI 以外,还管研究院。在研究院我们有1000多位科学家,刚才新智元的同事也问道,我觉得最重要的就是,要不断培养一代一代新的了不起的研究员,去做更了不起的技术。


例如我刚才提到,人工智能(更多在离散的空间做符号处理)和脑科学(更多在Neural神经元做连续处理)这两个空间的融合。符号可解释的空间和连续的脑空间之间的关系,三五年前基本上没有什么人研究这些方向。我认为更重要的就是应该培养新一代,看到这样的问题。如深度学习,要去解释它。


回到您刚才问的,微软有些什么样的目标?我觉得看得蛮清楚的,短期的话AI还是要看到短期业务,哪里有真正的商业价值。就是我们可以挣一些钱,定个小目标,这都非常重要。但是,更重要的事情是 AI 这个部门成立之后,我们要想清楚如果我们真的觉得AI会颠覆更多的行业应用,在颠覆的过程当中,我们的机会在哪。


主要是两个方面:一个是在现有的产品,比如Office等跟AI结合,将会有哪些颠覆性的内容产生,有什么新的产品出来,有什么新的功能出来,这边的话我们进展得非常好;另外一个你要去想,新的产品线在哪里,你有没有一条新的产品线出来,三五年以后可以做到十亿美元的生意。要思考,你有没有这样的业务,五到十年可以做到一百亿美元的生意。如果有,当然要放马去追求这样的机会。所以我们现在整个AI部门最重要的事情,就是决定要做什么,决定不做什么。


未来10年左右,计算机视觉可以识别一切;未来5到10年,可解释的AI是一个值得研究的方向,肯定会有重要突破


问:Harry你好,您之前提到的人工智能研究方向大致可以分为感知和认知两方面。我想请您以更加技术的语言来说明一下两者的趋势,可以举个例子讲一讲。


沈向洋博士:说到人工智能,大家今天激动得不得了,我自己也觉得有些东西是真的已经在发生了。首先,你要回过头来看,为什么会有“人工智能”这个词,“人工智能”实际上是对应于“人类智能”提出来的,就是human intelligence。 


为什么觉得人有智能,人的智能基本上分成两部分,一部分是感知,另一部分是认知。感知是里面最了不起的,而其中最大的一部分就是视觉的感知。以前有人做过这样的研究,一个人大概91%的信息是从视觉收集过来的,我忘记了他用什么样的方法算出来这个数字,但是我想大家基本上会同意,人绝大多数感知都来自于视觉。然后是听觉,然后才是其他的感知,比如触觉。

    

我觉得这边的进展非常大,过去这一年我都在讲,计算机语音识别的突破最多是5年的事情,也就是说5年之内计算机语音,不管你怎么去讲它都能识别,而且肯定会比人类强。然后,接下来10年左右的时间,计算机视觉也会达到这一点,今天视觉很多东西已经超过人,具体来讲比如人脸识别。但我讲的是一个很general的,anything is recognizable,到一个新地方,AI看到一个新东西能够联想到其他东西,这些我认为大概十年左右的时间可以实现。


但是在认知方面,今天我们远远没有获得突破,都谈不上跟人类相比的地步。首先是自然语言处理的问题,然后就是知识获取的问题。越来越多的人更应该去做这方面的工作。自然语言处理,我刚才也提到机器阅读,语言这个问题,相对来讲的确是比较复杂。用今天现有的方法,包括深度学习的方法,解出来的效果还不是足够好,当然用深度学习已经可以帮助到我们很多东西,比如像翻译也用了很多自然语言的东西。


更重要的,今天大家对整个“认知”这样的一件事情的定义,还在一个比较初级的阶段,什么叫做常识(Common Sense)?你怎么知道见到这个人以后,为什么会对他很有一种亲近的感觉?这些我们还不是很理解,而这是一个很大的问题。稍微岔开一点讲,很重要的问题,今天我们个人工智能做的这些东西,和脑科学的结合不够,理解也不够。很主要的原因就是对“智能”的很多东西,只有人脑这样一个范本,但人脑结构很特别,今天我们还不够理解。脑科学作为一门科学,今天也还处在一个早期的阶段,我们还不能做太多的实验,也不能随时把一个人的脑袋打开塞一些东西进去。


这个是一个长期的问题,现在越来越多的人也在想这样的问题。连接人工智能和脑科学,今天有一个方向我们觉得是很激动人心,现在在微软研究院很多的人在做这方面的事情,我也跟很多大学有一些合作,就是所谓的“可解释的AI”(Explainable AI)。我认为,Explainable AI在接下来5到10年,肯定可以做出非常了不起的成果。今天我如果有研究生的话,我就会让他们做这个方向的工作,原因非常简单,因为今天AI最大的突破就是深度学习,但是深度学习的一个最大的问题就是,出来的结果非常好,但是你没法解释。


我自己看到的,这方面写得最好的一篇文章,是最近在《纽约客》的一篇有关医疗AI的。为什么看同一张图,医生会跟你讲,你没问题,原因是一、二、三。但今天AI还做不到这点,深度学习做不到这点,很大的问题是大家解问题的空间不一样,医生是在一个所谓的neural,脑的这样一个连续的空间在解,而AI很多的理解是在符号的离散的空间上去做。

所以,如何把这些东西连起来,从技术上有讲有很多有待突破的地方,也是我们现在研究院很认真在做科研的一个方面。


问:微软现有的一些成果或者说优势都有哪方面?


沈向洋博士:我刚才提到在一些感知方面,从计算机视觉到计算机语音,我自己是觉得我们都是领先的。


问:有没有这方面的数据,或者特别强有力的案例?


沈向洋博士:我们是第一个做到语音识别达到人类水准,特别是在最难的数据级switch bot data set,在我演讲里面提到,6个月之前我们已经做到这一点。在计算机视觉方面,我们两年前第一次做到物体识别(Object Recognition)跟人一样的准确率。接下来,我希望我们在自然语言理解方面也能有所突破。翻译也是这样,翻译的质量特别是Spoken Language(口语语言),我们肯定也是世界领先的水平。但是有那么多的语言要去做,还有很多工程方面的问题要去解决,今天微软也只提供60种语言而已,世界上有6500多种语言,怎么样把人工智能普及化,也是我们要考虑的。


微软亚洲研究院不是公益组织,研究员对公司是有责任的,要把技术转化为产品


问:怎么样把研究院里研究实际去产品化和商业化。您在成立这个团队的时候,从研究到产品的流程有什么变化吗?另外一个是开发新的产品,比如大会第一天上的Demo,帮助患帕金森症的设计人员重新执行作画,怎么样把这样的研究个案去扩展开来?


沈向洋博士:这是一个非常好的问题,不知道在座有多少人做过研究,科研是很不一样的东西,很多人不明白,说这么多人做科研,怎么还没有产品化。科研就是一个很长期的东西,你要么就不要说自己做科研,要做科研就要有耐心。比如今天大家谈的热火朝天的量子计算,具体哪天量子计算机可以做出来,没有人知道。有人知道还得了,VC会像狼一样扑出去了(笑)。在这一点上,美国的这套系统还是值得我们学习。从大学开始,到研究所,再到工业界。以前的AT&T和IBM,再到现在的微软,很多公司愿意花很多的钱出来做长期的科研,而绝大多数的科研成果不仅仅属于本公司,只是自己的公司有可能得到利益。这一点我们盖茨讲得非常清楚,比如苹果和微软早期的成功,很重要的就是图形用户界面,而 graphic interface 最早是施乐做出来的,我们跟他们学习。同样,今天微软做了很多了不起的事,但是可能其他一些公司,甚至一些初创公司还会做得更好,这都是很正常的。

    

而且,做科研是非常愉快的一件事情,做科研最愉快的事情就是根本不用担心别人在想什么,你自己拍拍脑袋想想就可以,要有一个了不起的想法——我以前是多么的享受做科研,后来被鲍尔默赶出来去做产品。

    

最近我跟微软亚洲研究院同事交流,其实我们能够提供最了不起的东西是一个环境,这个环境里面不光是大家的待遇还不错,更重要的是边上有比自己更聪明的人,你可以向他们学习。第二,在微软研究院我们提供一个自由的空间,从来没有要求你一定要做什么,研究员你自己想做什么,你觉得应该做什么,就去做什么。因为你已经是最聪明的人之一了,才进得了微软研究院。有几个人选择要走了,出去做VC啊,换一家公司啊,这都很正常,我们就不断再培养下一代的人,重要的就是你要有一个能够不断培养人才的环境。

    

当然,因为你不是一个公益的研究院,当然对公司是有责任的,包括最重要的一件事情,就是从技术到产品的转化。目前,AI本身今天很多的东西还在研究阶段,所以今天微软重组,把AI和研究院放在同一个部门——我觉得非常荣幸能够领导这样的部门——我们看到了非常多的机会。怎么从技术到产品转化这个问题,可能今天最好的例子就是认知服务,其中大概2/3的技术是原来微软研究院做的,而且做了很多年,以前我们不是很清楚,一些计算机视觉的技术怎么转化成产品。但是因为有Azure,有认知服务这样的机会,很多很多的微软研究院的技术,都已经通过认知服务转化成为产品。

    

我再给你举两个例子,今年7月份在夏威夷,我会去计算机视觉最大的国际会议CVPR,今年他们请我做主题演讲,我演讲的题目就是“Commercialize Computer Vision – Success Stories and Lessons Learned”。这里面我会举三个例子,一个是认知服务,另外一个例子是我们最近推出了一款很了不起的相机iOS App,叫Microsoft Pix,大家有机会可以试一试。第一版出来的时候,里面就有12篇以前的论文做基础。当然有很多其他的公司相机应用做的非常好,包括iPhone本身的camera做的也相当好。

    

第三个例子是我最喜欢的HoloLens,它研发的过程是“研和发,研和发”不断循环的过程。HoloLens这帮人之前就是做Kinect,Kinect做出来微软研究院就做了Kinect Fusion,又做了一个项目叫Holodesk,如果是三维的东西,你怎么样加一些三维的虚拟物体进去。后来微软有一批非常了不起的做产品和设计的工程师,他们想到要在此基础上做成HoloLens,在这个过程当中,里面很多计算机视觉、语音的技术都是微软研究院一起做的,是一个共同研发的过程。

    

到最后你还是要有产品,因为对普罗大众来讲,他不会去看论文,也不知道你的论文有多了不起。你要跟人解释,最容易解释的方法就是你给人看看你的产品,HoloLens马上就会被人看到,我们希望有机会做一些更了不起的产品,不光是对消费者,更多是针对企业用户的产品。我个人认为,三五年内,对AI而言最大的机会还是在企业市场中。


微软的Cortana与谷歌Home和亚马逊Echo有何不同


问:您刚才把微软的Cortana还有Google、亚马逊的相关产品对比,讲到各家service都是很不同的,您能不能给我讲个例子展开一下。此外,国内AI公司有一个观点,认为如果做纯2B的开发者的生意,如果提供工具,本身可能不是一个在国内环境下很好的商业模式,觉得很苦不赚钱。但您对Cortana 的定义就是一款2B的工具。我比较好奇您怎么看?


沈向洋博士:第一个问题比较简单,我想强调一下,其他公司在做digital assistance都做得很好,但都非常难做。最近有个人在网上做了一些调查,好像75%的时候,如果你问Alexa问题,她会说“我没有答案”(I don’t have an answer)。实际上,今天语音这个东西,不会是因为有一家已经做了怎么样,其他人就不用做了,[市场还]远远没有[饱和]到这个地步,谷歌也在做,亚马逊也在做,苹果也在做,微软也在做,国内很多公司也在做,非常好,这个方向至少大家都看得很清楚。就像无人驾驶车一样,大家都在做无人驾驶车,已经没有人讨论这件事会不会发生。

    

在这样一个设计的过程当中,因为它本身就叫digital assistant,帮助你把事情做好。大家想的都是怎么样尽快找到你需要的东西,尽快帮你完成这样的工作,在这样的设计过程当中,完成任务的时间越短越好。另外一条思路,很特别的地方,我觉得还没有太多的人做的是从聊天机器人:我是你的同伴,我是陪伴你的,我不帮你解决任何问题。从微软研究院来说,我们是在两条腿走路,这肯定是我们最不一样的地方。

    

刚才新智元的记者也问到,微软是不是只做情感方面?不是这样的,我们是两条腿走路。这里面就像我刚才讲的有world knowledge、work knowledge、user knowledge,能够帮助你解决问题。另外一个怎么样可以得到你的信任,怎么样可以跟你继续做朋友,怎么样跟你继续聊下去,在这个过程当中不断积累知识。我们用的产品设计metrics,你能够和你这个Agent可以聊多少个来回。Cortana也好、Siri也好,Google Now大概就是三个来回,相当于对话一个半来回。你问Siri,西雅图的天气怎么样?它说,还是下雨,你就没什么问题问了。但小冰就不一样,小冰我们今天的最高对话次数是23个来回,你不断有这样的机会可以和它交流,在交流当中再去学习。我想强调的,并不是我们只做一个不做另外一个,就是助理(服务)和情感(陪伴)我们两边都要做。

    

第二就是你讲的2B的问题,我也听很多人讲,对于一个提供商用AI服务的初创公司来讲,面对像微软这样能稿提供很好的AI服务的公司,小公司有没有这样的一些商业的机会继续活下去?这个问题我自己是这么看:今天提供这样所谓的API,我也觉得一般小公司可能比较难做,因为有很大的投入,收费的方式各方面还要跟很多大公司竞争。

    

我认为很重要的一件事,接下来商业的机会还是在于所谓的business AI。因为它每一个vertical都必须要用AI,要去做这样的东西,你得一定要真的深入到某一个垂直行业中,必须要有很特别的data,你必须要有这样的用户,能够用到AI的应用部署出去,这样你可以做反馈。大多数的AI今天的技术不可能做到100%,甚至都不可能做到90%,它里面有很多的错误。比如Alexa、Siri、Cortana,今天来讲,很多时候它都没有真正回答你的问题。但是你需要有足够多的用户,他愿意继续用你这样的AI应用,给你提供反馈,给你提供数据。我自己是很看好垂直行业的。


认知计算会成为Azure重中之重;深度学习可以从安卓如何崛起中借鉴


问:您刚才的演讲里面主要是两大块,一块是AI怎么帮助开发者更好的去开发更customize应用场景,另外一块说重新定义(redefine)。我想问一下,微软通过人工智能对产品重新定义具体怎么做,有什么样的规划?


沈向洋博士:这个问题非常好,我今天讲的主要是三个方面。AI的三大方面,第一,你要有非常强大的运算能力;第二,你要有非常了不起的算法;第三,你一定要有自己的数据。

    

我用微软的例子来介绍一下,在微软,我们当然相信,微软所有的产品都必须要AI化,重新去定义这样的产品。我们现在很注重的地方是两个方面,一个是在所有的Office产品,在主旨演讲中我给大家看了 PowerPoint一个功能,就是翻译(translate)。其实PowerPoint他们还做了另外一个,我自己非常喜欢的,所谓的图说生成(image caption):来一张照片,PowerPoint图说生成可以自动给你出图片说明,这个我们已经做得相当好了。


PowerPoint很多人用。这样的数据可以帮助我们不断改善一些算法。前不久我们也发布Word,Word里面使用AI技术,这也非常非常重要。


这里面还有很多AI的技术都才刚刚开始,我自己觉得Office最激动人心的技术就是所谓的机器阅读。前不久微软买了一个加拿大的初创公司叫做Maluuba ,主要就是做这方面的工作,用自然语言、深度学习的方法来做这个东西。深度学习里面一个很重要的问题,就是回答问题。我觉得对Office的影响会非常巨大,所以我们AI部门的同事和Office的同事一起在做。


另外一个就是在云这里,大家合作非常多,你到Azure.com主页的产品里面,Cognitive Services的内容放置最显著的位置上,这是Scott和我,跟我们产品团队的同事review了以后决定,Cognitive Services会变成Azure的重中之重。Windows还有很多AI,像HoloLens还有很多AI的技术,计算机视觉、计算机语音方面。


陆奇去了百度,你们会跟他们合作吗


问:您刚才讲到微软在vertical领域跟一些服务商、应用商之间的合作,在平台方面,像谷歌、亚马逊、百度这方面的合作,怎样去解决社会责任和公司商业利益方面?另外,陆博士去了百度之后,百度和微软在中国人工智能的会有什么合作吗?


沈向洋博士:你这几个问题都问的非常好,微软比较特别,我们有一个微软研究院,研究院本身是非常开放的,所有科研的东西每年我们都发很多论文,几乎所有的公司都没法跟我们比,到今天为止,过去这20多年下来,在所有的计算机领域最一流的位置上,最佳论文奖获得者,微软研究院遥遥领先全球第一。我们今天微软对社会仍然有这样的责任,继续做最了不起的计算机科研,包括AI这方面,并且以开放的方法去做。  

    

从一个商业公司的角度来讲,我们还是有两个方面,你看的很准确,第一我们提供一个平台和工具,大家都可以用的,包括科研人员、大学的老师、学生都可以用。我们公司也做垂直行业,office AI会越做越好,比如讲云里面的应用,比如database,这些东西我们都可以继续做。你作为一个商业的话,跟其他产品竞争很正常。这些大的公司之间,大家可以怎么合作,可能有几个不同的层面。

    

在工具层面,我举个例子,比如讲TensorsFlow,有一些新的工具出来,像深度学习做到这样的地步,大家都觉得有道理,它就自然会出现一些工具出来。在TensorFlow出现的同时,至少有4、5个工具,比如讲亚马逊最近收了公司去做MXNet,大家各有所长。TensorFlow谷歌推的比较早,推的比较猛,用户很多。很重要的一点,我们作为一个community,大家应该把一些力量聚集起来。

    

我觉得大家可以从安卓兴起的过程当中学习很多东西,在深度学习下一波浪潮当中怎样才可以做得更好,我不觉得微软一家公司可以把这些东西都做出来。

    

国内公司你提到,我们就是跟国内的公司非常开放的,你刚才提到陆博士,我刚才提到很多其他的同事去其他的公司,大家的关系都非常好。大家可能知道去年11月的时候,我回去微软亚洲研究院成立了一个院友会,亚勤、我、洪小文,我们一起组织其他人一起过来,大家这么多年是很好的朋友,即使大家不在同一个公司一起工作的话,我觉得最重要的是大家还在一个行业,大家应该互相帮助,我当然是希望每一个同事在微软都做的很好,希望以前的同事可以继续做的很好。


问:微软会不会越来越多的考虑Open Source的工具?


沈向洋博士:肯定,微软其实现在已经非常开源了,你看我们CNTK现在完全是开源的。开源是一种文化,有不同的方法可以做开源。我自己是觉得开源对这个世界的科技发展产生了巨大的深远影响。微软发展很迅速,我们完全是拥抱开源。





新智元招聘


新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金、高瓴智成、蓝湖资本 、蓝象资本跟投。本轮融资将用于新智元团队规模扩充并增加新产品服务线,目标打造 To B 的人工智能全产业链服务平台。 

职位:客户总监


职位年薪:30 - 60万(工资+奖金)

工作地点:北京-海淀区

所属部门:客户部

汇报对象:COO

下属人数:8 人

年龄要求:25 岁 至 40 岁

性别要求:不限

工作年限:5 年

语  言:英语 + 普通话

学历要求:全日制统招本科


职位描述:


  1. 热爱人工智能,在行业内有一定的人脉资源和影响力;

  2. 为客户制定媒体关系策略和公关活动策划,达成客户的市场或传播目标;

  3. 负责监督公关项目的计划和实施,使项目能按期在预算内完成;

  4. 积极拓展客户资源,开发公司业务,与既有客户保持紧密的业务联络和沟通;

  5. 监督、管理及考核客户服务团队,全面提升公司客户服务质量;

  6. 理工科背景优先,有知名企业或知名媒体机构工作经验者优先。



应聘邮箱:[email protected] 

HR微信:13552313024

新智元欢迎有志之士前来面试,更多招聘岗位请点击【新智元招聘】查看。