ps:亲爱的读者,微信公众号又改版了,如果没有星标,公号文章就会渐渐沉底,错过生信热门知识。
给生信人一个星标,让我们每天都能见面。
方法如下 :
👇 👇
细胞死亡在生物体的进化、生物个体的稳定以及多个系统的发育中都发挥关键作用。这一过程若发生调控异常就会导致癌症等疾病的发生及进展。近两年,多种细胞死亡方式都受到广泛关注,如铁死亡、铜死亡及细胞焦亡等都是发文章的热点方向。今天小编就和大家分享另外一种细胞死亡形式——失巢凋亡。失巢凋亡(anoikis)是细胞与外界环境联系中断后发生的一种反应。失巢凋亡与癌症、肝纤维化、心肌病变等疾病密切相关。失巢凋亡作为又一被关注的细胞死亡形式,可以说是一个生信发文热点。今天小编就整理了
两个有代表性的失巢凋亡生信研究思路,并介绍了相关的典型文章,这两个思路对肿瘤及非肿瘤疾病都适用,且无论是公共的bulk还是单细胞数据都可以应用。
失巢凋亡经典案例解读+实操精细化讲解课程
👇扫码加入学习👇
已有4377位小伙伴
在此,爱知求真
这么火的分析思路,价值1000元的课程
现折后价49.9元,数量有限,手快者得
还赠送全套的数据、代码、操作详情、还有集中的答疑售后
堪称生信届的天水麻辣烫
不为别的,就为交个朋友
思路一:基于失巢凋亡基因进行患者分型并构建预后模型
该文章是2023年发表在
INT J MOL SCI(IF:5.6/Q1)
杂志上的一篇关于失巢凋亡的
公共数据纯生信文章
。接下来小编就和大家介绍一下文章的主要内容。
文章首先在TCGA肝细胞癌(LIHC)队列中识别了肿瘤及正常样本的差异表达基因(DEGs)(图1-1A)。接着从GeneCards数据库中获得失巢凋亡相关基因。对这两个基因集取交集识别出168个差异表达的失巢凋亡相关基因(图1-1B)。
文章接着基于上面识别的差异失巢凋亡基因使用一致性聚类识别了TCGA-LIHC的2个亚型(图1-2A,亚型A和B)。文章通过主成分分析(PCA)也将亚型A和亚型B明确分开(图1-2B)。生存分析观察到A组的生存率低于B组(图1-2C)。在两个亚型之间,差异失巢凋亡基因的表达也具有显著差异(图1-2D)。文章也分析了两个亚型的功能差异(图2E)。此外也分析了两个亚型间的免疫浸润水平差异(图1-2F和G)。
文章接着对差异失巢凋亡基因进行了WCGNA分析(图1-3A-C),结果识别出了与肿瘤发生显著相关的模块(图1-3D和E)。研究也对模块基因进行了功能富集分析(图1-3F和G)。
接下来文章根据WGCNA识别的模块识别了失巢凋亡相关的基因亚型(图1-4A和B)。研究观察到两个亚型间同样具有显著的生存及基因表达差异(图1-4C和D)。
文章接着基于失巢凋亡构建了预后风险模型。研究首先将TCGA队列分成了训练集和验证集,接着使用单因素Cox比例风险回归分析识别了失巢凋亡候选基因(1-5C),接着应用这些基因进行LASSO回归进一步筛选基因构建风险模型(图1-5A和B)。接着根据风险评分的中位数将患者分为两组,结果观察到训练集和验证集在两组间预后和基因表达都具有显著差异(图1-5D-G)。此外,研究也在训练和测试数据队列中对风险模型进行了ROC分析(图1-6A)。训练和测试数据集中也观察到高风险与低风险间基因表达具有显著差异(图1-6B)。研究也根据风险模型构建了诺莫图(图1-6C),并分析了风险基因的预后作用(图1-6D)。
研究接着使用ICGC和GEO数据集验证与失巢凋亡的预后风险模型。结果发现与低风险患者相比,高风险的患者生存更差,模型基因表达也显著上调(图1-7A-D)。研究也对ICGC队列进行了ROC验证(图1-7E)。此外,研究也分析了预后基因在肿瘤和正常组织中的表达差异(图1-7F和G)。
文章接着分析了失巢凋亡相关的亚型、基因亚型、风险组与患者生存状态的关系(图1-8A)。文章发现失巢凋亡亚型和基因亚型的风险评分具有显著差异(图1-8B和C)。研究使用CIBERSORT算法分析了浸润免疫细胞与风险群体的相关性。结果发现多种免疫细胞的浸润与风险得分显著 相关(图1-8D-G)。此外预后基因也被观察到与大多数免疫细胞高度相关(图`1-8H)。
思路二:基于失巢凋亡整合组织及单细胞数据构建诊断模型
基于机器学习和单细胞RNA测序数据综合分析骨关节炎中失巢凋亡基因诊断
该文章是今年2月刚刚发表在
Artificial Cells Nanomedicine and Biotechnology(IF:5.8/Q1)
杂志上
基于失巢凋亡基因整合单细胞及组织数据构建骨关节炎(OA)诊断模型的公共数据纯生信分析文章。
接下来小编和大家分享下文章的主要内容。
研究的主要流程如图2-1所示。文章首先从GEO数据库收集了OA队列,接着识别了正常和OA样本间的差异表达基因(图2-2A)。接着识别差异失巢凋亡基因(图2-2B,C)。研究也对这些差异失巢凋亡基因的染色体位置进行了可视化(图2-2D)。研究也通过相关分析为研究了这些差异失巢凋亡基因间的相互作用(图2-2E)。
文章使用Lasso回归分析从差异失巢凋亡基因组中识别10个基因作为潜在的OA生物标志物(图2-3A,B)。研究基于这10个基因的表达进行一致性聚类分析,结果将OA样本分为失巢凋亡A和B亚型(图2-3 C-F)。主成分分析也表明亚型A和B亚型间有明确的分类(图2-3G)。
文章接着识别了两个失巢凋亡亚型间的差异表达基因(图2-4A)。接着分析了两个亚型间28种免疫细胞丰度(图2-4B)。结果观察到两组间28种免疫细胞具有不同比例(图2-4C)。研究也通过GSVA对两组样本进行了功能富集分析(图2-4D)。此外,也对亚型差异基因进行了GO和KEGG富集分析(图2-5A-D)。文章也分析了两个亚型中免疫检查位点的表达差异(图2-5E)。研究基于亚型间差异基因也进行了GSEA富集分析(图2-5F,G)。研究也利用CIBERSORT分析了两个亚型间22种免疫细胞的浸润(图2-6A-B)。接着研究分析了识别的10个标志基因的表达与28种免疫细胞浸润间的相关性(图2-6C-E)。
研究对A亚型和B亚型进行了差异分析,识别了失巢凋亡亚型相关的差异基因。研究接着基于这些基因将OA患者分为两个基因组(基因亚组A和基因亚组B,图2-7A-E)。研究也分析了两个基因亚型间的免疫浸润景观(图2-7E)。