专栏名称: OFweek人工智能
提供人工智能行业最新热点新闻、技术、产品以及线上线下研讨会、产品资讯、市场信息等。
51好读  ›  专栏  ›  OFweek人工智能

2018年图灵奖颁布:授予三位人工智能“教父”

OFweek人工智能  · 公众号  ·  · 2019-03-28 17:59

正文

点击上方蓝色字体,关注我们





Yann LeCun、Geoffrey Hinton、Yoshua Bengio


  • Yoshua Bengio(58岁)是蒙特利尔大学教授,也是魁北克人工智能研究所的科学主任;

  • Geoffrey Hinton(71岁)是谷歌副总裁和Engineering Fellow,Vector人工智能研究院首席科学顾问,多伦多大学名誉教授;

  • Yann LeCun(55岁)是纽约大学教授、Facebook副总裁兼首席AI科学家。


北京时间3月27日晚间消息,三位计算机科学家为人工智能的发展奠定了基础,并在今天被共同授予图灵奖。这也是该领域内的最高荣誉。


美国计算机协会(ACM)宣布把2018年的图灵奖(Turing Award)颁给多伦多大学名誉教授兼谷歌大脑人工智能团队的高级研究员Geoffrey Hinton(杰弗里•辛顿)、纽约大学教授兼Facebook首席人工智能科学家Yann LeCun(杨立昆)以及蒙特利尔大学教授兼人工智能公司Element AI的联合创始人Yoshua Bengio(约书亚•本吉奥)。


三位获奖者将获得100万美元的奖金。辛顿表示他会把自己的部分奖金捐给多伦多大学的人文学院。“他们一直资金不足,我想人文学科对于人类未来是非常重要的。”他在采访中这样说道。本吉奥表示他也许会利用这笔奖金来解决气候变化问题。


图灵奖又被称作是计算机科学领域的诺贝尔奖,之前的获奖者包括创建了万维网的蒂姆·伯纳斯·李(Tim Berners-Lee)以及“公钥加密”概念发明人惠特菲尔德·迪菲(Whitfield Diffie)。


今年的三位获奖者常被称作是“深度学习教父”,他们在神经网络方面的研究作出了重大贡献——这种机器学习软件能够模仿人类大脑的运作模式。


全面认识深度学习三巨头


以下是ACM对三位大神的官方介绍。


Geoffrey Hinton



Geoffrey Hinton是谷歌副总裁兼Engineering Fellow,向量研究所首席科学顾问、多伦多大学名誉教授。Hinton在剑桥大学获得实验心理学学士学位,在爱丁堡大学获得人工智能博士学位。他是CIFAR的神经计算和自适应感知(后来的“机器和大脑学习”)项目的创始主任。


Hinton曾获加拿大最高荣誉勋章,英国皇家学会会员,美国国家工程院外籍院士,国际人工智能联合会议(IJCAI)卓越研究奖,NSERC Herzberg金牌奖,及IEEE James Clerk Maxwell金牌。他还被“连线”杂志选为“2016年度最具影响力100人”之一,并被彭博社选为2017年“改变全球商业格局的50人”之一。


Yann LeCun



Yann LeCun是纽约大学Courant数学科学研究所的Silver教授,Facebook的副总裁兼首席AI科学家。他在英国电子技术与电子学院(ESIEE)获得高等英语学士学位,在玛丽·居里·皮埃尔大学获计算机科学博士学位。


LeCun是美国国家工程院院士,来自墨西哥IPN和洛桑联邦理工学院(EPFL)的荣誉博士,宾夕法尼亚大学Pender奖得主,埃因霍温技术大学和飞利浦实验室Holst奖章获得者,诺基亚-贝尔实验室Shannon Luminary奖、IEEE PAMI杰出研究员奖、以及IEEE神经网络先锋奖。


他被《连线》杂志选为“2016最具影响力人物100人之一”以及“25位创造商业未来的天才”之一。LeCun是纽约大学数据科学中心的创始主任,也是CIFAR学习机器和脑力项目的负责人(与Yoshua Bengio共同担任)。 此外,LeCun还是人工智能合作伙伴关系委员会的联合创始人和前成员之一,该机构是研究AI的社会后果的企业和非营利组织的联合体。


Yoshua Bengio



Yoshua Bengio是蒙特利尔大学的教授、魁北克人工智能研究所和IVADO(数据实验研究所)的科学总监。他是CIFAR机器和脑力学习项目的联合主任(与Yann LeCun共同担任)。 Bengio拥有麦吉尔大学电子工程学士学位,计算机科学硕士和博士学位。


Bengio曾获加拿大勋章,加拿大皇家学会会员和Marie-Victorin奖。他创建魁北克人工智能研究所(Mila)和并担任该所科学主任也被认为是对AI领域的重大贡献。 Mila是一家独立的非营利组织,目前拥有300名研究人员和35名教职员工,目前是世界上最大的深度学习研究学术中心,并使蒙特利尔成为一个充满活力的AI生态系统,全球多家大公司和AI创业公司均在此设立研究实验室。


三位大神的成就


最后,送上本次获图灵奖的三位大神的主要技术成就,这些成就对其后的深度学习研究产生了巨大的影响,值得后人铭记。


Geoffrey Hinton


反向传播:

1986年,Hinton与David Rumelhart和Ronald Williams共同撰写了“Learning Internal Representations by Error Propagation”论文,Hinton等人在文中证明了反向传播算法可以让神经网络发现自身的数据内部表示,这一发现让神经网络有可能解决以前被认为不可解决的问题。反向传播算法已经成为如今大多数神经网络的标准。


玻尔兹曼机:

1983年,Hinton与Terrence Sejnowski一起共同发明了玻尔兹曼机,这是第一个能够学习不属于输入或输出的神经元内部表示的神经网络之一。


对卷积神经网络的改进:

2012年,Hinton与他的学生Alex Krizhevsky和Ilya Sutskever一起使用整流线性神经元和退出正则化改进了卷积神经网络。在著名的ImageNet图像识别大赛中,Hinton和他的学生几乎将对象识别的错误率降低了一半,可以说重塑了计算机视觉领域。


Yoshua Bengio


序列的概率模型:

20世纪90年代,Bengio将神经网络与序列的概率模型(如隐马尔可夫模型)结合起来。这些思想被纳入AT&T / NCR用于读取手写支票的系统中,成为20世纪90年代神经网络研究的巅峰之作,目前的深度学习语音识别系统正是这些概念的扩展。


高维词汇嵌入和注意力机制:

2000年,Bengio撰写了具有里程碑意义的论文“A Neural Probabilistic Language Model”,此文引入了高维词嵌入作为词义表示。Bengio的这个思想对日后的自然语言处理任务产生了巨大而深远的影响,其中包括语言翻译、问答和视觉问答系统开发等。Bengio的团队还引入了“注意力机制”,导致了机器翻译研究的突破,并成为深度学习的顺序处理的关键组成部分。


生成对抗网络(GAN):

自2010年以来,Bengio与Ian Goodfellow共同开发的生成对抗网络(GAN)引发了一场计算机视觉和计算机图形学的革命。GAN的一个引人注目应用是,计算机实际上能够生成原始图像,这种创造力往往被认为是机器具备人类智能的标志。


Yann LeCun


卷积神经网络:

20世纪80年代,LeCun开发了卷积神经网络,成为神经网络领域的基本模型。在20世纪80年代后期,LeCun在多伦多大学和贝尔实验室工作期间,首次在手写数字图像上成功了训练卷积神经网络系统。如今,卷积神经网络是计算机视觉、语音识别,语音合成、图像合成和自然语言处理领域的行业标准。已被用于自动驾驶、医学成像分析、语音助手和信息过滤等多个领域。


对反向传播算法的改进:

LeCun提出了反向传播算法的早期版本(backprop),并根据变分原理对其进行了简洁的推导。他表述了缩短学习时间的两种简单方法,从而加快了反向传播算法的速度。


拓宽神经网络的研究领域:

LeCun还拓宽了神经网络的研究领域,将神经网络作为一种计算模型应用于更广泛的任务上。他在早期研究中引入的许多思想和理念,现在已成为AI领域的基础概念。例如,在图片识别领域,他研究了如何让神经网络学习层次特征,这一方法现在已经用于很多日常的识别任务。他们还提出了可以操作结构数据(例如图数据)的深度学习架构。







请到「今天看啥」查看全文