3.信息是具有增量的特征的,即同一事件,发生一次的信息量是
I
I ,则重复投递两次的信息量是
2 I
2I
那么为了实现我们的目的
将概率事件的信息量进行量化
2.自信息
就是单个事件的信息量的量化值
我们构建这样一个公式:
I (x) =−l og (p( x))
I ( x)= −lo g( p(x))
这里
P (x)
P ( x) 就是随机事件
X =x
X = x 时候事件发生的概率
l og 对 数 函 数 式 增 函 数 , 那 么 − lo g 函 数 就 是 减 函 数
log对 数函数式增 函数, 那 么− l og函数 就是减函数 ,这样构建出来的函数就实现了我们的某种目的,随着概率的减小,信息量就越大
但是自信息仅能预测一个事件的信息量
I (x)
I ( x) 的单位是奈特
n at
na t ,就是说1
n at
na t 代表以
1 /e
1/ e 概率的一个事件的自信息量
3.香农熵
往往在我们的实际应用中我们需要使用
香农熵
来对整个事件概率分布中的不确定性总量进行量化
在这里我们可以借鉴
随机变量X的数学期望的求值公式
E (X )=∑ ∞ k =1 x k p k
E( X)= k=1 ∑ ∞ x k p k
这里的香农熵其实可以看做是:
信息量
I(x)
I(x)的数学期望的求值公式
H (X )= ∑ n k =1 p k lo g( p k )
H (X) = k= 1 ∑ n p k log( p k )
这里k是类别,n代表总类别
下面我们举例说明:
数组1:
111111
数组2:
111
222
数组3:
11
22
33
我们来算数组1 ,2 和 3的香农熵
H (1) = −1∗log ( p(1)) = 1∗ 0 =0
H (1)= −1 ∗log(p (1))= 1 ∗ 0= 0
H (2) = −1/2∗ l og (p( 1)) +(−1/ 2 ∗l o g(p(2 ) )= − 1/2∗I n1/ 2+1 /2∗ I n 1/2 ≈ 0.7
H (2)= − 1/ 2∗ lo g( p(1) ) + (−1 /2 ∗ log (p (2)) = −1/2 ∗ In1 /2 + 1 /2 ∗ In1/ 2 ≈ 0 .7
H (3) = −1/3∗ l og (p( 1)) +(−1/ 3 ∗l o g(p(2 ) )+ ( −1/3∗ lo g ( p( 3))≈1
H (3)= −1/ 3 ∗ lo g(p (1)) + (−1/3 ∗ log ( p(2)) + (−1 /3 ∗ log ( p(3)) ≈ 1
这样来看数组1的香农熵为0,则为必然事件,数组2居中,数组3最大,则其概率分布的概率最小
4.交叉熵
前面我们有讲到
自信息
和
香农熵
那么如何用到机器学习和深度学习中呢,不着急慢慢往下看
我们记得之前在多类别分类的模型中我们有用到
s of tma x
so ftmax 进行每个类别概率估计,然后取最大概率做为预测值
而当我们反向更新soft为激活函数的模型或者神经网络时候,是将交叉熵做为
loss函数
loss函数进行梯度调节的
那么让我们聚焦
交叉熵
在这之前我们需要看下
K L
K L 散列,这是基于香农熵用来衡量对于同一个随机变量X的两个单独分布
P (X )和 Q(X )
P ( X)和Q( X) 的差异的途径:
D k l (P ∣∣Q )= E x −p [l og (P (x )/ Q(x ) )] =E x −p [ log (P (x ))−l og (P (x ))]
D kl (P∣∣Q ) = E x−p [log (P( x)/ Q(x ))] = E x−p [lo g (P( x) ) − lo g( P(x )) ]
但是在深度学习中我们使用
K L
KL 散列的变形,也就是交叉熵来作为某些场景的
l os s
loss 函数,即:
H (P ,Q) =H (P )+D K L (P ∣∣Q )
H (P,Q )= H(P) + D KL (P∣∣Q )
根据
K L
K L 散列我们队上述公式进行变形:
H (P ,Q )= −E x −p [l o g P ( x )] +E x −p [ l o g P (x )]−E x −p [ l o g Q( x) ]
H(P, Q) = −E x− p [logP( x )]+ E x− p [lo gP(x )]− E x− p [l o gQ (x) ]
经过变形就得到:
H (P ,Q) =− E x −p [l og Q(x)]
H (P,Q )= −E x−p [log Q(x)]
接着,我们变化成易于理解的
l oss
l oss 函数
H (P ,Q )= ∑ x P (x )l og Q( x)
H (P, Q )= x ∑ P( x )log Q(x )
到这里我们看到了我们熟悉的成本函数,
s of tm ax
s oft ma x 回归分类器的成本函数
接着我们探讨为什么使用这个成本函数
主要是softmax等多分类器,在评估真实值(
y
y )和预测值(
y e xc p t
y excp t )距离时,更多的是在评估概率之间的距离,这样使用传统的均方根误差做为
l oss
l oss 函数毫无意义
我们来举个例子(以MNIST为例: 识别0~9的数字图片):
假设输出层是
s of tma x
so ftmax 为激活函数:
那么我们假设用两组标签相同的实例
A 和B
A和 B 来进行分析
首先我们的
l abel
l a bel 都是0,所以真实值得向量组合是(1,0,0,0,0,0,0,0,0,0)
A的预测值向量组合(0.9,0.2,0.1,0,0,0,0,0,0,0)
B的预测值向量组合(0.8,0,0.1,0,0.5,0,0,0,0,0)
接着算A和B的交叉熵(也就是
l oss
l o ss 函数) :
H (P ,Q) =−(1∗ log ( 0.9)+ 0∗l og (0.2)+0 ∗l o g( 0.1) + 7∗ ( 0∗ l og (0) )≈ 0.1
H (P, Q )= −( 1∗ l o g(0 .9) + 0∗ l o g(0 .2) + 0∗ l og (0. 1 )+ 7 ∗ (0 ∗ l og( 0) ) ≈ 0. 1
H (P ,Q )= −( 1∗ l o g ( 0.8 ) + 0 ∗ l o g ( 0.1 ) + 0 ∗ l o g ( 0.5 ) + 7 ∗ ( 0 ∗ l o g ( 0 ) ) ≈ 0.2
H( P , Q ) = − ( 1 ∗ l o g ( 0 . 8 ) + 0 ∗ l o g ( 0 . 1 ) + 0 ∗ l o g ( 0 . 5 ) + 7 ∗ ( 0 ∗ l o g ( 0 ) ) ≈ 0 . 2
P代表真实值
Q代表预测值
因为
0.1 <0.2
0.1 < 0 .2 ,所以明显第一组要由于第二组
补充一点:交叉熵
H (P ,Q)
H ( P,Q) 不是对称的,所以
H (P ,Q) ≠H (Q, P)
H (P,Q ) ̸ = H(Q, P) 所以要注意P和Q的顺序,一版情况下,P代表真实值,Q代表预测值