膨胀可以延续至无穷,其中每一“代”新的镶嵌片都比上一代要大。请注意第二代的风等虽然与第一代的A尖具有相同的大小和形状,但是其构成方式不同。出于这个原因,A尖也被称为傻瓜的风筝。绝不可把它错认为是第二代风筝。收缩就是将同样的进程逆向进行。在每一种彭罗斯铺陈上,我们都能画出一代一代越来越小的飞镖和风等。这种模式也可延续至无穷,从而创造出个分形(参见原书第3章)的结构。
康韦对彭罗斯的图案不可数的证明(彭罗斯早先曾用一种不同的方法证明过)可以作如下概述。在风筝对称轴的一边标注L(“左”的英文left的首字母),另一边标注R(“右”的英文 right 的首字母)。在飞镖上也如此操作,用l和r进行标注。然后在铺陈图案上随机选择一点。记录下表示它在镶嵌片上位置的那个字母。将这个图案膨胀一步,注意同一个点在第二代镶嵌片上的位置,并再次记录下那个字母。持续进行更高阶的膨胀,你就会创造出一个符号的无限序列,这个序列,可以说,独一无二地标记了从选择的那一点看到的原始图案。
在原始的图案上选择另一点这个过程可能会给出一个开头不同的序列不过它会到达一个字母,在这个字母之后直至无穷,它都会与前一个序列一致。如果不存在这样在某一个特定点之后的一致性,那么这两个序列所标识的就是截然不同的图案。由这四个符号构成的所有可能的序列并不都能通过这个方式产生,不过可以证明,标记不同图案的序列在数量上与一条线上的点的数量对应。
我们忽略了那些铺陈图案中的着色曲线,这是因为它们对观察这些镶嵌片造成了困难。不过,如果你用着色的镶嵌片来研究的话,你就会为这些曲线所创造出的各种美丽图样然心动。彭罗斯和康韦分别独立地证明:每当一条曲线闭合时,它就具有五轴对称性,并目这条曲线内部的整个区域都具有五重对称性。在一种图案中,对每种颜色而言,至多只能有两条曲线不闭合。在大多数图案中,所有曲线都闭合。
尽管我们有可能构造出一些具有高阶对称性的彭罗斯图案(有无穷多种图案都具有双侧对称性),但是大多数图案,都如同宇宙一样,是由有序和出乎意料地偏离有序所构成的一种神秘莫测的混合体。随着这些图案的扩张,它们似乎总是尽力重复自身,却又总是不能很好地做到这一点。切斯特顿曾经提出过,如果有一个外星人在观察人体上有多少特征是左右重复的,那么他就会合理地推断我们的身体两边各有一颗心脏。他说道,这个世界“看起来比实际情况恰好更数学一点、更有规律一点;它的精确性是显而易见的,但不精确性则隐置其中;其放荡不羁潜伏以待。”到处都存在着“对精确性少许悄无声息的背离,这是事物中恒有的一种怪异的要素……宇宙中一种隐秘的叛逆。”这段话很好地描述了彭罗斯的平面世界。
关于彭罗斯的宇宙,还存在某种更为令人惊奇的事情。从一种奇特的有限意义上来说,由于受到“局部同构定理”的制约,所有的影罗斯图案都是相似的。彭罗斯证明:任何图案中的每一个有限区域,都包含在所有其他图案中的某处。此外,它在每种图案中出现无穷多次。
为了理解这种情形有多么狂,请想象你正居住在一个无限大平面上,这个平面由不可数的无穷多种彭罗斯铺陈中的一种镶嵌而成。你可以在这不断扩张的面积上一片一片地检查你的图案。无论你探索多大的面积,你都无法确定自己是处在哪一种铺陈方式上。去往远处以及检查不相连的区域都毫无帮助,因为所有这些区域都属于一个大的、有限的区域,而这个区域在所有图案中都被精确地复制了无穷多次。当然,对于任何周期性镶嵌图而言,这都是显而易见的事实,然而彭罗斯宇宙并不是周期性的。它们有无穷多种方式使得彼此显得不同,却又只能在触不可及的极限上才能将它们彼此区分开来。
假设你已探究过一个直径为d的圆形区域。我们把它称为你所居住的“镇”。突然之间,你被传送到一个随机选择的平行的彭罗斯世界。你离一个与你家乡的镇里的街道一模一样的圆形区域有多远?康韦用一条超凡卓越的定理给出了答案。从你家乡的镇的边界到那个一模一样的镇的边界的距离,绝不会超过黄金比例的立方的一半的d倍,或者说就是2.11+
[ 译者注:这里的加号(+)表示(1.61803398…)³=2.1180399…]
乘以d。(这是一个上限,而不是平均值。)如果你朝着正确的方向走,那么你不需要超过这个距离,就会发现自己置身于你自己家乡的镇的精确复制品中。这条定理也适用于你身处的宇宙。每一种大的圆形图案(有无穷多种不同的图案)都可以朝某个方向走过一段距离而到达,这个距离必定小于这个图案直径的大约两倍,更有可能大约就等于该直径。
这条定理相当出人意料。考虑一列无模式的数字序列,例如π,展示出了一种类似的同构。如果你选择一列由10个数字构成的有限序列,然后从π中的一个随机位置开始,当你沿着π走得足够远的话,你就肯定会遇到与此相同的序列,不过你必须走的距离不存在已知的上限,并且预期的距离远多于10位数。这个有限数列越长,你可以预计要再次找到它就需要走得越远。在一种彭罗斯图案上,你总是非常靠近家乡的一个复制品。
飞镖和风筝恰好适合铺陈在一个顶点周围的方式只有七种。让我们首先来考虑(用康韦的术语来说)两种具有五轴对称性的方法。