专栏名称: 好玩的数学
好玩的数学以数学学习为主题,以传播数学文化为己任,以激发学习者学习数学的兴趣为目标,分享有用的数学知识、有趣的数学故事、传奇的数学人物等,为你展现一个有趣、好玩、丰富多彩的数学世界。
目录
相关文章推荐
超级数学建模  ·  不到4折!KAYANO ... ·  昨天  
超级数学建模  ·  限时领 | ... ·  昨天  
超级数学建模  ·  限时领 | ... ·  2 天前  
51好读  ›  专栏  ›  好玩的数学

《高观点下的初等数学》:伟大的数学教育家、哥廷根数学学派领袖的不朽经典

好玩的数学  · 公众号  · 数学  · 2020-12-08 07:43

正文


启蒙数学文化译丛

《高观点下的初等数学》(全三卷) 是具有世界影响的数学教育经典,由伟大的数学教育家、哥廷根数学学派领袖菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写。书中充满了他对数学教育的洞见,生动地展示了一流大师的风采,值得每一位数学教育工作者和数学研习者精心研读。

菲利克斯·克莱因

《高观点下的初等数学》导读

吴大任

F.克莱因(1849—1925)是有深远影响的数学家。他的贡献遍及几何、代数、函数论、理论物理以及数学史等,在这些领域,他都留下了经典性著作。 他是权威性的德国《数学百科全书》的主创者之一,曾任最高水平的德国《数学年刊》的主编,致力于这两项事业达四十春秋。他热诚地献身于数学教育及其改革,是促进数学教育国际委员会创始人之一,并始终积极参与其中的活动。他著述《高观点下的初等数学》 (“初等数学”指当时德国中小学的数学,难度比我国中小学数学略高) 这样的书,真可谓出色当行,游刃有余,得心应手。这书内容十分博洽,而论述生动活泼,不拘一格,把严谨性和直观性巧妙结合,深入浅出,使读者有举重若轻、左右逢源之感。

《高观点下的初等数学》由F.克莱因的助手根据他在哥廷根大学讲课内容整理而成。60多年过去,数学面貌已有很大变化,我国目前的数学教育和德国当年也有很大差异。我们阅读这书时,对此必须注意。尽管如此,我们读来,对其内容和观点,仍然感到十分亲切。 这是因为,其内容主要是基础数学,其观点蕴含着真理。当时德国数学教育中的不少问题,在今日我国仍然存在。 克莱因声称本书是为中学教师和成熟的大学生写的,但按其内容,所有对数学有一定了解的人都可以从中获得教益和启发。

数学科学的整体性和数学教育的连续性


要想用一两句话来概括《高观点下的初等数学》这本丰富多彩的书的特色,是困难的。也许可以说:它所展示的数学科学,是一个不断发展着的有机整体;克莱因所设计的数学教育,是一个随着数学发展而不断更新的连续过程。 正如书名《高观点下的初等数学》所示,书的着眼点是初等数学,观点却是高等数学。数学各个分支,特别是数学两个基本对象——形与数结合起来了。 讲算术、代数、分析时,总是充分运用丰富的几何图像。而讲几何时,用的是代数工具,又不乏几何语言。它还以大量篇幅阐述数学的各种概念和方法的发展与完善过程以及数学教育演化的经过。这些进程还在继续。

高观点


在《高观点下的初等数学》的前言中, 克莱因指出大学和中学数学教育的“双脱节”现象: 大学生感到,他正在学的东西和中学学过的无关,而当他们到中学任教时,大学所学的用不上,因而那些内容就只存在于美好的记忆中。本书的直接目的自然是要改变这种不合理现象,以便把数学的新进展中所产生的新观念渗入中学数学教育中,按我们现在的说法,就是使数学教育“现代化”。

克莱因所采用的书名表明, 他认为教师应具备较高的数学观点。 理由是,观点越高,事物越显得简单。例如在实数域里不好理解的某些东西,从复数域的观点看,就清楚了;在欧氏空间里某些不好解释的现象,从射影空间的观点看,就有满意的说明。下面分别举两个具体的例子。

克莱因指出,在中学,关于对数的传统讲法是有明显漏洞的。他建议把对数函数作为等角双曲线下的面积来引进,既简单又明确。他又指出,在复数域里,对数是多值函数,作为实函数的对数只是其中无数多个值之一。所以,在复数域里,对数函数的本质才看得清楚。我们的教师,无论是否愿意(或可能)采纳克莱因所建议的引进对数方式,有一点是可以肯定的:如果他了解作为复数的对数函数,当他讲实数时,就会心中有数,有可能弥补漏洞,至少当学生提出疑问时,他能正确回答,应付裕如。

通过变换群来阐明不同几何的本质及其相互关系,本是克莱因的伟大创见之一。《高观点下的初等数学》用了很大篇幅来论述欧氏几何、仿射几何和射影几何的关系。我认为,中学几何是欧氏几何,但也涉及图形的仿射性质(如三角形的重心)和射影性质(如三点共线)。如果教师能区别各种性质,在教学中自然是有利的。克莱因举了一个例子来说明局限在欧氏空间就不好理解的现象:两个二阶曲面一般相交于一条四阶曲线,但两个球面(二阶曲面)一般只相交于一个(实的或虚的)圆(二阶曲线)。原来,从射影空间观点看,可以认为,两个球面还相交于“无穷远虚圆”,而两个圆在一起,恰好构成一条(退化的)四阶曲线。


教师应是多面手


克莱因对教师的要求是很高的。《高观点下的初等数学》涉及的面很广。除正文4大部分外,还有两个附录:“数e和π的超越性”和“集合论”。每一大部分的写法和通常写法都很不相同,且其内容有不少超出通常写法的习惯范围。例如在“算术”部分写了四元数;在“几何”部分写了高维(以至无穷维)空间,并且随时讲到历史和应用。显然,克莱因认为,教师对这些都应当掌握或了解。 他认为,大学生学到的具体东西不少,而许多重要的,以及在中学任教中用得着的东西却往往被忽视了。 《高观点下的初等数学》就着眼于弥补这些缺憾,揭示数学各部分之间的联系,指出它们的共性,它们产生与成长的内因、外因和过程以及它们的应用,等等。 克莱因认为,教师掌握的知识要比他所教的多得多,才能引导学生绕过悬岩,渡过险滩。 他喜欢用“融合”这个词。《高观点下的初等数学》也确实体现了初等数学同高等数学的融合,数学各部分的融合,几何观念和算术观念 (在这里以及许多其他地方,“算术”是广义的,用来表示纯几何的对立面,包括代数和分析) 的融合,感性与理性的融合(甚至一维、二维、三维空间的融合),等等。可以认为,全书是以上各种融合的融合。强调这一切,是为了使大学生和教师对数学有较全面的观点,有较高的修养。

数学发展的历史


克莱因反复强调的一个教育原则是按照学生的认知规律(包括年龄及成熟程度)进行教学。具体地说,要由简单到复杂,由低到高,由感性到理性等。 他讲数学历史,是因为,他认为学生对数学的认识,在某种意义上,是与人类对数学认知的历史过程相应的。 当然,这绝不是说,学生的认知要重复历史上人类的认知。

在讲述数学的历史时,克莱因强调对事物认识深化的必然性(这不排除偶然性)。某些新概念的出现,是由于客观条件已经成熟而非产生不可。例如他指出,负数和复数的出现,是不以数学家的意志为转移的。非欧几何产生后,许多数学家是被迫承认它的。微积分由粗糙到严格,有着艰辛的历程。函数概念和几何对象范畴等的演化,都有过漫长的过程。我以为,了解一些历史是很有意义的;我们的课程往往分别构成首尾完整的逻辑体系。学生在学习中很难充分领会到数学是如何逐步成长起来,它又将如何继续发展。

公理体系


《高观点下的初等数学》多处谈到公理体系,特别是关于数的公理和几何公理。克莱因认为,公理不能脱离直觉,不能排除人对客观事物的认识。因而反对那样一种观点:认为公理可以随心所欲地选取,只要它们彼此相容,即不产生矛盾就可以了。他还认为,不能按照公理体系进行教学。因为这首先不符合学生的认识规律。逻辑不是数学教学中的唯一指导思想。此外,他还有一个更深刻的理由。 他把数学比作一棵树,公理比作树的根,当树逐渐长大时,躯干和枝叶向上长,同时根也向下长。因此既没有最后的终点,也没有最初的始点,即没有进行教学的绝对基础。 至于教师,之所以要了解公理对数学的作用和意义,则是和他对教师的要求一致的;公理体系在数学作为一个演绎的逻辑结构中,毕竟占有极其重要的地位,不了解它就不能了解数学的本质和全貌。而在教学中,教师固然要考虑大多数学生的兴趣和接受能力,同时他又应能满足一些才华出众的学生的求知欲望,适当地回答他们可能提出的问题。

尺规作图和费马大定理







请到「今天看啥」查看全文