专栏名称: 高考数学左老师
我是一名中学数学教师,喜欢高考研究.每天我会和朋友们分享一篇好文,内容涉及考试提分办法,高中生学习习惯,数学方面的知识体系、规律总结,还有高考政策解读,青年心理状态等,不整虚的高大上,但求实用能提分,全原创.高考路上,老左伴你同行.
目录
相关文章推荐
51好读  ›  专栏  ›  高考数学左老师

基本不等式的“定”和“等”

高考数学左老师  · 公众号  · 初高中  · 2017-10-27 05:30

正文

微信昵称为“Zach”的读者朋友问到下面的问题:


左老师,这道题看了解析以后总觉得怪怪的,但是又没有强有力的证据支持我的想法,所以想问问您 .



这道题有三点疑惑.


第(1)处那里,它是同时用了两个基本不等式.


请问,这里满足基本不等式中的“正、定、等”吗?


不是说相加或相乘要为定值吗?但(2x-1)*1也不为定值啊.


第(2)处那里.即便第(1)处没有问题,在连用两个基本不等式之后,已经是前一个式子的最小值,这里又再用一次基本不等式求最小值的最小值,合理吗?


第(3)处,因为用了三次基本不等式.当然要有三个当且仅当.


但是,如果这里三个等式不能同时取等号又该怎么做?(当然这道题可以,有没有可能无法同时取等的时候).


最后,有没有别的易于理解的解法?


谢谢.



Zach,


你应该是认真看过了互动的正确姿势,问的很具体,这才是合适的提问方法.


这样我们的沟通效率才高.



1

为什么求最值一定要“定”?


童鞋们都知道,用基本不等式求最值的三字诀——一正二定三相等.


市面上的资料基本围绕如何满足“一正二定三相等”的条件来求最值.


但是却很少讲,为什么一定要这三个条件呢?


“正”字不必多说,大家好理解,这是推导基本不等式的前提条件.


再来看“定”:a*b为定值,则a+b有最小值;a+b为定值,则a*b有最大值.即“积定和最小,和定积最大”.


为什么一定要“定值”呢?


看栗子.



这样解虽然使用了基本不等式,但是右边的式子并不是定值,结果正确吗?


显然,当x=2时,(9-2x)x的值等于10>9,所以上面的解法错误.


错误是如何发生的呢?


我们分别画出两个函数f(x)=(9-2x)x,g(x)=[(9-x)/2]^2的图象.




从上图我们能看出:随着x的变化,(9-2x)x、[(9-x)/2]^2也都在变化,而且(9-2x)x始终小于等于[(9-x)/2]^2.


而且,当9-2x=x即x=3时,(9-2x)x等于[(9-x)/2]^2.


这些都没有错.


但是来了.


但是取等号时的位置并不是取最值的位置.


怎样能保证取等号时就是最值呢?


答案是:必须定值!


看正确解法.



再看图象,我们画出函数两个函数f(x)=(9-2x)x,g(x)=81/8的图象.



看出定值的好处来了吗?


因为是定值,它的图象是一条平行于x轴的直线,这样就保证了——f(x)的图象都在直线的下方,取等号的位置就是最值的问题.


最后就到了“等”的要求了.


无需多言,如果等号取不到,最值显然也取不到.


2

可以多步到达“定”,只要多个等号能同时取得


从上面的分析我们能看出,用基本不等式求最值不仅要求“一正二定三相等”,而且顺序都不能变——先要求"正",再要求"定",最后研究取等的条件是否满足.


当然,如果只是使用基本不等式研究两个变量的不等关系,只要明白“正”和“相等”就够了.


比如,我们只是比较0


首先确定是否为正数.


然后使用基本不等式,知道(9-2x)x<=(9-x)^2/4.


最后我们确定,当9-2x=x即x=3时,二者相等.


这就为“定值”提供了另外一种路径——多步到达“定值”.



画出图来,是这样的感觉.



只要中间的两个等号能够同时取得,f(x)也能取得最小值.


所以,你提供的答案解析是可行的.


回到你的问题:如果中间的几个等号不能同时取得,怎么办?


那就说明,这个解法行不通,要换别的思路.


画出图来,就类似于这样.



从上图看出,两个取等条件不一致,所以最终取不到最值.



3

有无其它解法?


你问是否有易于理解的解法?


我想,你的意思是问,有没有一步到位的解法?


也有,但同时需要学一点基本不等式的拓展——从二元到多元.


上面的解法中,用到了四元的基本不等式.


实际上,基本不等式可拓展到n元.学霸筒子们可参考.



温馨提示:要获取微信公众号“高考数学左老师”的精华内容,可以回复“关键词”,你会获得一份关键词列表.根据这份列表,回复对应的关键词,就可获得内容.


推荐阅读:圆锥曲线综合题之定值问题

上一篇:二面角的平面角如何确定是锐角还是钝角?


--END--

苹果手机用户专属赞赏二维码