突破性:
超轻,99.99%部分都是空气,表观密度为0.9g/cm3,是一种合成的多孔极轻3D开放式蜂窝聚合物结构金属材料,具有声学、振动和冲击能量抑制,非常坚硬,压缩50%张力之后能够完全恢复,具有超级高能量吸收能力。
发展趋势:
电池电极、催化剂载体,未来航空飞行器制造,微格金属材料可以确保美国宇航局降低深太空探索航天器40%质量,这对于未来旅行至火星和其它星球至关重要。
主要研究机构(公司):
Boeing。
突破性:
碳化硅、氮化镓、氧化锌、氮化铝等宽紧带半导体材料。具有宽的禁带宽度,高的击穿电场,高的热导率,高的发光效率,高的电子饱和速率及高的抗辐射能力。更适用于制作高温高频、抗辐射及大功率器件。
发展趋势:
更高集成度的电子器件,光电子器件、电力电子器件,蓝光LED,OLED,照明、新能源汽车、导弹、卫星等。
主要研究机构(公司):
罗 姆、三菱电机、松下电器,Cree、Bandgap、DowDcorning、II-VI、Instrinsic,日本的Nippon、Sixon,芬兰的Okmetic,德国的SiCrystal,TDI、Kyma、ATMI、Cree,日亚(Nichia)、Matsushita、索尼(Sony)、 东芝(Toshiba)。
突破性:
4D打印是一种能够自动变形的材料,直接将设计内置到物料当中,不需要连接任何复杂的机电设备,就能按照产品设计自动折叠成相应的形状。即无需打印机器就能让材料快速成型的革命性新技术。大小形状可以随时间变化。4D打印最关键是记忆合金。
发展趋势:
家具制造以及最终的宇宙航天和建筑领域。
主要研究机构(公司)
:斯特塔西有限公司,麻省理工学院
。
突破性:
金属氢是液态或固态氢在上百万大气压的高压下变成的导电体。导电性类似于金属,故称金属氢。金属氢是一种高密度、高储能材料,之前的预测中表明,金属氢是一种室温超导体。金属氢内储藏着巨大的能量,比普通TNT炸药大30─40倍。
发展趋势:
能量密度最高的化学燃料料(如:火箭燃料),航天级新概念武器,发电储能材料,可能为常温超导体,新火药,潜在的聚变应用价值。
主要研究机构(公司):
哈佛大学,爱丁堡大学。
突破性:
高熵合金由多种含量相近的主元混合而成,由于主元数增多,混合熵增加,混产生独特的高熵效应,并抑制金属间化合物和其他有序相的生成。元素间不同的尺寸和结合力,导致了合金具有晶格畸变和缓慢扩散效应,保证了合金强硬;凝固过程中保留的大量缺陷和能量,使得铸态的合金即保留了很大的残余能量,有利于孪晶等的发生,变现出一系列优异的和特殊的力学行为;多种主元,保证了合金的钝化层复杂,耐腐蚀性能优越,等等。高熵合金在机械性能、耐腐蚀、耐磨损、磁学性能、 抗辐照、低温性能等方面都很优异。
发展趋势:
工业制造,航空航天,电子电器等领域。
主要研究机构(公司):
北卡罗莱纳州立大学,卡塔尔大学,浙江大学,北京科技大学。
突破性:
硼墨烯是一种不同寻常的材料,因为它在纳米尺度表现出很多金属特性,而三维硼或者散状硼都只是非金属半导体。因为硼墨烯同时具有金属性和原子厚度,从电子产品到光伏发电都具有广泛的应用可能性。导电属性具有方向性,较高的拉伸强度。
发展趋势:
航空航天,纳米级电子设备,微型机械设备等领域。
主要研究机构(公司):
美国能源部阿贡国家实验室、西北大学和纽约州立大学石溪分校,美国布朗大学,清华大学。
突破性:
锂-氧电池或锂空气电池能量密度是锂离子电子的10倍,被业界誉为“终极电池”。理论上这样的能量密度可使电动车续航能力接近传统汽油汽车,电动汽车只充一次电就能从伦敦驶到爱丁堡,而且锂空气电池的成本和重量只有现在市面上销售的电动汽车所使用的锂离子电池的1/5。
发展趋势:
航空航天,电子电器,动力汽车等领域。
主要研究机构(公司):
日本产业技术综合研究所,日本学术振兴会(JSPS),剑桥大学,美国IBM。
突破性:
特种纤维分别具有不同的特殊性能,如耐强腐蚀、低磨损、耐高温、耐辐射、抗燃、耐高电压、高强度高模量、高弹性、反渗透、高效过滤、吸附、离子交换、导光、导电以及多种医学功能。例如,TeflonTFE®,Nomex®,Kermel®,Kevlar®,Torayca®。
发展趋势:
航空航天,交通,装备,体育休闲,通信,机械,化工,国防军工等领域。
主要研究机构(公司):
杜邦,东丽,帝人,东洋纺,东华大学,天津工业大学大学,北京化学研究所。
突破性:
目前万物智能的发展方向来说,穿戴式设备将会越来越普及,开发一种导电性和拉伸性极佳的高分子材料,可用于可拉伸塑料电极。这种柔性电极也可作为可穿戴电子器件。也就是说,如果成功,以后,我们带有「智能」的衣服或者体内的供电设备就不会再被僵硬的电路掣肘了。