成都大学李俊龙课题组Nature Catalysis: NHC催化的超远端芳基C-H位点选择性酰化反应
近日,成都大学李俊龙课题组在Nature Catalysis上发表了题为“Remote site-selective arene C–H functionalization enabled by
N
-heterocyclic carbene organocatalysis”的研究论文。本研究利用氮杂环卡宾有机小分子催化,开发了一种“芳环的超远端”位点选择性的酰基化策略,实现了超远端芳基C(sp
2
)-H键的位点选择性活化。
“Remote site-selective arene C–H functionalization enabled by N-heterocyclic carbene organocatalysis.
Qing-Zhu Li, Wen-Lin Zou, Zhao-Yuan Yu, Xin-Xin Kou, Yan-Qing Liu, Xiang Zhang, Yu He & Jun-Long Li*
Nat. Catal.
2024
. Doi: 10.1038/s41929-024-01194-5”
高选择性的远端惰性C-H键官能化一直是有机合成领域的重要挑战之一。除了远端C-H金属化
[1-3]
、过渡金属催化的σ键活化
[4-5]
和卡宾或氮烯插入
[6]
外,自由基介导的转化因其反应条件温和且环保,在远端功能化方面赢得了越来越多的关注。其中,利用自由基介导的分子内氢原子转移(HAT)化学可以实现远端C-H活化,然而这一策略通常局限于距离反应中心不超过7个化学键的C(Sp
3
)-H键(Fig. 1a-b)。对于远距离的芳基C(sp
2
)-H键来说,其具有较高的键能、空间位置不利等多种挑战,因而无法通过传统的自由基化学对其进行选择性活化。这里,
成都大学的李俊龙课题组利用NHC自由基催化完成了一系列远端芳基C(sp
2
)–H键的活化,实现了一种全新的“芳环超远端的位点选择性酰基化”反应,为超远端芳基C(sp
2
)–H键的官能化提供了一个新颖的、绿色的、高效的合成工
(Fig. 1d)。
Fig. 1. Background and discovery of N-radical-directed remote arene C–H functionalization. a
, Radical-mediated remote C–H functionalization.
b
, Diverse pathways driven by intramolecular radical addition to arenes.
c
, Approaches to site selective functionalization of remote arene C–H bonds.
d
, This work: N-radical-directed para-selective acylation of ultraremote arene C–H bonds. FG, functional group; DG, directing group; TM, transition metal.
作者首先以苯丙酰胺
1a
和苯丙醛
2a
为模型底物,通过大量的条件筛选表明:采用氮杂环卡宾
N1
为催化剂,K
3
PO
4
作碱,在甲苯中60℃反应效果最佳,能以96%的产率得到远端酰基化的产物
3a
(Fig. 2a)。反应条件的敏感性评估结果表明:该反应对各种外部条件都比较耐受,但对氧气较为敏感,因而需要在惰性气体中进行反应(Fig. 2b)。
2. Reaction condition assessment. a
, Optimal reaction conditions: amide
1a
(0.10 mmol), aldehyde
2a
(0.25 mmol), NHC (10 mol%) and base (0.12 mmol) in 1 ml of solvent at 60 °C for 12 h; isolated yield. The results of various screening conditions are presented.
b
, Sensitivity assessment. The robustness and reproducibility of this catalytic method was evaluated by a sensitivity assessment for the reaction conditions.
令人欣慰的是,该反应策略具有广泛的底物普适性。就醛类底物而言(Fig. 3),不同电性基团取代的苯丙醛、直链脂肪醛、支链烷基醛、含有烯烃官能团或杂原子的烷基醛、环状烷基醛以及乙醛酸乙酯都能顺利进行反应;在对位、间位或邻位上具有吸电子或给电子取代基的苯甲醛、双取代芳醛、稠环芳醛和各种杂芳香醛也都与该催化体系兼容。
3. Aldehyde scope of the organocatalytic remote acylation.
Diverse alkyl and aryl aldehydes were well tolerated in the organocatalytic acylation. Reactions were carried out with amide
1a
(0.10 mmol), aldehyde
2
(0.25 mmol), NHC
N1
(10 mol%) and K
3
PO
4
(0.12 mmol) in 1 ml of toluene at 60 °C for 12 h; isolated yield; no regioisomer was detected in all cases.
a
DMSO (0.1 M) was used as solvent, and phenylpropionic acid (0.06 mmol) was used as an additive.
多种类型的酰胺类化合物都适用于该催化反应(Fig. 4)。烷基酰胺底物无论芳环上有不同电性取代基、强定向基、强拉电子基或多个取代基,还是具有稠芳环、支链或增大
N
-自由基中心的空间位阻对催化效率均没有太大的影响;不同类型的氨基甲酸酯类底物也可以顺利进行反应;含有
N
-3,3-二苯丙基的氨基甲酸酯底物只得到了苄醇芳基对位酰化的产物,进一步证实了该反应的高位点选择性。此外,该反应还能实现联苯酰胺芳烃底物的位点选择性的远端碳氢官能化。
4. Amide scope of the organocatalytic remote acylation.
Broad substrate scope of amides was observed in the organocatalytic acylation. See Fig. 2 for reaction conditions; isolated yield; no regioisomer was detected in all cases.
a
KHCO
3
was used as the base.
b
DCM was used as the solvent.
c
DMSO (0.1 M) was used, and phenylpropionic acid (0.06 mmol) was used as an additive.
d
For the carbamate substrates,
N2
(10 mol%) was used as the catalyst and DCM (0.1 M) was used as the solvent. R
1
= phenylethyl; R
2
= pyrazinyl; R
3
= 4-Br–C
6
H
4
.
本文建立的NHC有机催化方案可进一步应用于多种药物骨架、生物活性分子和糖类化合物的官能团化修饰(Fig. 5),如头孢类抗菌药物(cefoxitin)、非甾体类抗炎药芬布芬(fenbufen)和吲哚美辛(indometacin)、治疗痛风药物非布索坦(febuxostat)和丙磺舒(probenecid)、血脂调节药吉非罗齐(gemfibrozil)、治疗痤疮类药物阿达帕林(adapalene)、薄荷醇(
L
-menthol)、diacetone-
D
-galactose等。
Fig. 5. Late-stage functionalization of drugs and biologically active molecules.
The NHC organocatalytic arene C–H acylation protocol was successfully applied to the late-stage functionalization of various pharmaceutical skeletons. See Fig. 2 for reaction conditions.
a
For compound
11
, DCM (0.1 M) was used as the solvent.