专栏名称: 化学空间 服务科研工作者
本公众号由Chem-Station化学空间网站团队运营,所有内容各位原创,宗旨是服务科研工作者,提供化学科研、科普、就业、行业前沿等最新咨询,通过新媒体实现信息更快捷的传递和分享
目录
相关文章推荐
51好读  ›  专栏  ›  化学空间 服务科研工作者

成都大学李俊龙课题组Nature Catalysis: NHC催化的超远端芳基C-H位点选择性酰化反应

化学空间 服务科研工作者  · 公众号  ·  · 2024-07-25 09:00

正文


成都大学李俊龙课题组Nature Catalysis: NHC催化的超远端芳基C-H位点选择性酰化反应



本文作者:石油醚


导读

近日,成都大学李俊龙课题组在Nature Catalysis上发表了题为“Remote site-selective arene C–H functionalization enabled by N -heterocyclic carbene organocatalysis”的研究论文。本研究利用氮杂环卡宾有机小分子催化,开发了一种“芳环的超远端”位点选择性的酰基化策略,实现了超远端芳基C(sp 2 )-H键的位点选择性活化。


“Remote site-selective arene C–H functionalization enabled by N-heterocyclic carbene organocatalysis.


Qing-Zhu Li, Wen-Lin Zou, Zhao-Yuan Yu, Xin-Xin Kou, Yan-Qing Liu, Xiang Zhang, Yu He & Jun-Long Li*


Nat. Catal. 2024 . Doi: 10.1038/s41929-024-01194-5”


正文

高选择性的远端惰性C-H键官能化一直是有机合成领域的重要挑战之一。除了远端C-H金属化 [1-3] 、过渡金属催化的σ键活化 [4-5] 和卡宾或氮烯插入 [6] 外,自由基介导的转化因其反应条件温和且环保,在远端功能化方面赢得了越来越多的关注。其中,利用自由基介导的分子内氢原子转移(HAT)化学可以实现远端C-H活化,然而这一策略通常局限于距离反应中心不超过7个化学键的C(Sp 3 )-H键(Fig. 1a-b)。对于远距离的芳基C(sp 2 )-H键来说,其具有较高的键能、空间位置不利等多种挑战,因而无法通过传统的自由基化学对其进行选择性活化。这里, 成都大学的李俊龙课题组利用NHC自由基催化完成了一系列远端芳基C(sp 2 )–H键的活化,实现了一种全新的“芳环超远端的位点选择性酰基化”反应,为超远端芳基C(sp 2 )–H键的官能化提供了一个新颖的、绿色的、高效的合成工 (Fig. 1d)。


Fig. 1. Background and discovery of N-radical-directed remote arene C–H functionalization. a , Radical-mediated remote C–H functionalization. b , Diverse pathways driven by intramolecular radical addition to arenes. c , Approaches to site selective functionalization of remote arene C–H bonds. d , This work: N-radical-directed para-selective acylation of ultraremote arene C–H bonds. FG, functional group; DG, directing group; TM, transition metal.


作者首先以苯丙酰胺 1a 和苯丙醛 2a 为模型底物,通过大量的条件筛选表明:采用氮杂环卡宾 N1 为催化剂,K 3 PO 4 作碱,在甲苯中60℃反应效果最佳,能以96%的产率得到远端酰基化的产物 3a (Fig. 2a)。反应条件的敏感性评估结果表明:该反应对各种外部条件都比较耐受,但对氧气较为敏感,因而需要在惰性气体中进行反应(Fig. 2b)。


2. Reaction condition assessment. a , Optimal reaction conditions: amide 1a (0.10 mmol), aldehyde 2a (0.25 mmol), NHC (10 mol%) and base (0.12 mmol) in 1 ml of solvent at 60 °C for 12 h; isolated yield. The results of various screening conditions are presented. b , Sensitivity assessment. The robustness and reproducibility of this catalytic method was evaluated by a sensitivity assessment for the reaction conditions.


令人欣慰的是,该反应策略具有广泛的底物普适性。就醛类底物而言(Fig. 3),不同电性基团取代的苯丙醛、直链脂肪醛、支链烷基醛、含有烯烃官能团或杂原子的烷基醛、环状烷基醛以及乙醛酸乙酯都能顺利进行反应;在对位、间位或邻位上具有吸电子或给电子取代基的苯甲醛、双取代芳醛、稠环芳醛和各种杂芳香醛也都与该催化体系兼容。


3. Aldehyde scope of the organocatalytic remote acylation. Diverse alkyl and aryl aldehydes were well tolerated in the organocatalytic acylation. Reactions were carried out with amide 1a (0.10 mmol), aldehyde 2 (0.25 mmol), NHC N1 (10 mol%) and K 3 PO 4 (0.12 mmol) in 1 ml of toluene at 60 °C for 12 h; isolated yield; no regioisomer was detected in all cases. a DMSO (0.1 M) was used as solvent, and phenylpropionic acid (0.06 mmol) was used as an additive.


多种类型的酰胺类化合物都适用于该催化反应(Fig. 4)。烷基酰胺底物无论芳环上有不同电性取代基、强定向基、强拉电子基或多个取代基,还是具有稠芳环、支链或增大 N -自由基中心的空间位阻对催化效率均没有太大的影响;不同类型的氨基甲酸酯类底物也可以顺利进行反应;含有 N -3,3-二苯丙基的氨基甲酸酯底物只得到了苄醇芳基对位酰化的产物,进一步证实了该反应的高位点选择性。此外,该反应还能实现联苯酰胺芳烃底物的位点选择性的远端碳氢官能化。


4. Amide scope of the organocatalytic remote acylation. Broad substrate scope of amides was observed in the organocatalytic acylation. See Fig. 2 for reaction conditions; isolated yield; no regioisomer was detected in all cases. a KHCO 3 was used as the base. b DCM was used as the solvent. c DMSO (0.1 M) was used, and phenylpropionic acid (0.06 mmol) was used as an additive. d For the carbamate substrates, N2 (10 mol%) was used as the catalyst and DCM (0.1 M) was used as the solvent. R 1 = phenylethyl; R 2 = pyrazinyl; R 3 = 4-Br–C 6 H 4 .


本文建立的NHC有机催化方案可进一步应用于多种药物骨架、生物活性分子和糖类化合物的官能团化修饰(Fig. 5),如头孢类抗菌药物(cefoxitin)、非甾体类抗炎药芬布芬(fenbufen)和吲哚美辛(indometacin)、治疗痛风药物非布索坦(febuxostat)和丙磺舒(probenecid)、血脂调节药吉非罗齐(gemfibrozil)、治疗痤疮类药物阿达帕林(adapalene)、薄荷醇( L -menthol)、diacetone- D -galactose等。


Fig. 5. Late-stage functionalization of drugs and biologically active molecules. The NHC organocatalytic arene C–H acylation protocol was successfully applied to the late-stage functionalization of various pharmaceutical skeletons. See Fig. 2 for reaction conditions. a For compound 11 , DCM (0.1 M) was used as the solvent.







请到「今天看啥」查看全文