专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  《爱可可微博热门分享(12.19)》 ... ·  昨天  
爱可可-爱生活  ·  【Markdown To ... ·  3 天前  
爱可可-爱生活  ·  晚安~ #晚安# -20241217224439 ·  3 天前  
机器之心  ·  AI大模型时代,人才的需求已经变了 ·  3 天前  
爱可可-爱生活  ·  《爱可可微博热门分享(12.16)》 ... ·  4 天前  
51好读  ›  专栏  ›  机器学习研究会

【论文】Facebook AI研究部门何恺明等大神新作:目标分割通用框架Mask R-CNN

机器学习研究会  · 公众号  · AI  · 2017-03-22 18:46

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:星空下的巫师

论文《Mask R-CNN》摘要:

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.


链接:

https://arxiv.org/abs/1703.06870


原文链接:

http://weibo.com/1785748853/EAVhO6AGZ?from=page_1005051785748853_profile&wvr=6&mod=weibotime&type=comment

“完整内容”请点击【阅读原文】
↓↓↓