不过学员群小伙伴们很喜欢举一反三,拿他们看到的自己的领域相关文献来考我们表达量矩阵数据分析关键的知识点。比如其中一个小伙伴就分享了这个《
Thrombospondin-1 Regulates Trophoblast Necroptosis via NEDD4-Mediated Ubiquitination of TAK1 in Preeclampsia
》,文章虽然也是常规的差异分析+生物学功能数据库注释,但是两次都能定位到关键基因和通路,想问我们有什么技巧!
The PPI network revealed the links of the DEPs and found that proteins, such as GAPD, ALB, THBS1, and LDHB, were in the core location
THBS1 was one of the DEPs that was significantly down-regulated in the placentae of patients with sPE, and it has the largest number of GO entries in the GO database
从这个结果里面,研究者们注意的了 a remarkable up-regulation of necroptosis but had little effect on apoptosis ,其实仍然是跟前面的蛋白质组学差异分析同样的难点,因为也是成百上千个基因有统计学显著的改变,哪怕是注释到kegg这样的生物学功能数据库也是有很多条目。但是,神奇的地方来了,这个时候作者需要引入生物学背景知识:
Z-nucleic acid-binding protein 1 (ZBP1) and TAK1 act as master regulators of PANoptosis, which includes pyroptosis, apoptosis, and necroptosis
The activation of ZBP1and inhibition of TAK1 can trigger necroptosis