专栏名称: Python之禅
分享Python相关技术干货,偶尔扯扯其它的
目录
相关文章推荐
Python爱好者社区  ·  国企官网被挂上“码农的钱你也敢吞,还钱” ·  昨天  
Python中文社区  ·  揭秘 DeepSeek ... ·  昨天  
Python开发者  ·  DeepSeek 下棋靠忽悠赢了 ... ·  3 天前  
Python爱好者社区  ·  “给我滚出贵大!”郑强出任贵州大学校长,打算 ... ·  4 天前  
Python爱好者社区  ·  节后第一个私活,赚了3w ·  3 天前  
51好读  ›  专栏  ›  Python之禅

一次非常有趣的 SQL 优化经历

Python之禅  · 公众号  · Python  · 2019-12-18 11:53

正文

作者 | 风过无痕

链接 | cnblogs.com/tangyanbo/p/4462734.html

场景

我用的数据库是mysql5.6,下面简单的介绍下场景

课程表:

create table Course(
c_id int PRIMARY KEY,
name varchar(10)
)

数据100条

学生表:

create table Student(
id int PRIMARY KEY,
name varchar(10)
)

数据70000条

学生成绩表SC:

CREATE table SC(
    sc_id int PRIMARY KEY,
    s_id int,
    c_id int,
    score int
)

数据70w条

查询目的:

查找语文考100分的考生

查询语句:

select s.* from Student s where s.s_id in(select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )


执行时间:30248.271s
晕,为什么这么慢,先来查看下查询计划:
EXPLAIN 

select s.* from Student s where s.s_id in
(select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )


发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段了。

先给sc表的c_id和score建个索引

CREATE index sc_c_id_index on SC(c_id);CREATE index sc_score_index on SC(score);


再次执行上述查询语句,时间为: 1.054s
快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。
但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:

查看优化后的sql:

SELECT
    `YSB`.`s`.`s_id` AS `s_id`,
    `YSB`.`s`.`name` AS `name`
FROM
    `YSB`.`Student` `s`
WHERE
    < in_optimizer > (
        `YSB`.`s`.`s_id` ,< EXISTS > (
            SELECT
            FROM
                `YSB`.`SC` `sc`
            WHERE
                (
                    (`YSB`.`sc`.`c_id` = 0)
                    AND (`YSB`.`sc`.`score` = 100)
                    AND (
                        < CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id`
                    )
                )
        )
    )

怎么查看优化后的语句?

方法如下(在命令窗口执行 ):
有type=all
按照我之前的想法,该sql的执行的顺序应该是先执行子查询
select s_id from SC sc where sc.c_id = 0 and sc.score = 100
耗时:0.001s
得到如下结果:
然后再执行
select s.* from Student s where s.s_id in(7,29,5000)
耗时:0.001s
这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*8次。

那么改用连接查询呢?

SELECT s.* from 
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100
这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index
执行时间是:0.057s
效率有所提高,看看执行计划:
这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引
CREATE index sc_s_id_index on SC(s_id);
show index from SC
再执行连接查询
时间: 1.076s
竟然时间还变长了,什么原因?查看执行计划:
优化后的查询语句为:
SELECT
    `YSB`.`s`.`s_id` AS `s_id`,
    `YSB`.`s`.`name` AS `name`
FROM
    `YSB`.`Student` `s`
JOIN `YSB`.`SC` `sc`
WHERE
    (
        (
            `YSB`.`sc`.`s_id` = `YSB`.`s`.`s_id`
        )
        AND (`YSB`.`sc`.`score` = 100)
        AND (`YSB`.`sc`.`c_id` = 0)
    )
貌似是先做的连接查询,再进行的where条件过滤

回到前面的执行计划:

这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:
正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join,因此先执行where过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql
SELECT
    s.*
FROM
    (
        SELECT
            *
        FROM
            SC sc
        WHERE
            sc.c_id = 0
        AND sc.score = 100
    ) t
INNER JOIN Student s ON t.s_id = s.s_id
即先执行sc表的过滤,再进行表连接
执行时间为:0.054s
和之前没有建s_id索引的时间差不多

查看执行计划:

先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引
CREATE




    
 index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);
再执行查询:
SELECT
    s.*
FROM
    (
        SELECT
            *
        FROM
            SC sc
        WHERE
            sc.c_id = 0
        AND sc.score = 100
    ) t

INNER JOIN Student s ON t.s_id = s.s_id
执行时间为:0.001s
这个时间相当靠谱,快了50倍
执行计划:
我们会看到,先提取sc,再连表,都用到了索引。

那么再来执行下sql:

SELECT s.* from 
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id


where sc.c_id=0 and sc.score=100
执行时间0.001s
执行计划:
这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。
调整内容为SC表的数据增长到300W,学生分数更为离散。

先回顾下:

show index from SC
执行sql
SELECT s.* from 
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id


where sc.c_id=81




    
 and sc.score=84
执行时间:0.061s
这个时间稍微慢了点

执行计划:

这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度,单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425。
而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率将会更高,从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大,因此根据具体业务情况建立多列的联合索引是必要的,那么我们来试试吧。
alter table SC drop index sc_c_id_index;
alter table SC drop index sc_score_index;
create index sc_c_id_score_index on SC(c_id,score);
执行上述查询语句
消耗时间为:0.007s
这个速度还是可以接受的

执行计划:

该语句的优化暂时告一段落

总结:

  • mysql嵌套子查询效率确实比较低
  • 可以将其优化成连接查询
  • 连接表时,可以先用where条件对表进行过滤,然后做表连接
    (虽然mysql会对连表语句做优化)
  • 建立合适的索引,必要时建立多列联合索引
  • 学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要

索引优化

上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引
后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。

单列索引

查询语句如下:
select * from user_test_copy where sex = 2 and type = 2 and age = 1
索引:
CREATE index user_test_index_sex on user_test_copy(sex);
CREATE index user_test_index_type on user_test_copy(type);
CREATE index user_test_index_age on






请到「今天看啥」查看全文