专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【Claude和o3 ... ·  2 天前  
爱可可-爱生活  ·  【五个Jupyter实用技巧】1. ... ·  2 天前  
宝玉xp  ·  //@刘群MT-to-Death:这种氛围真 ... ·  3 天前  
机器学习研究组订阅  ·  o3-mini物理推理粉碎DeepSeek ... ·  5 天前  
爱可可-爱生活  ·  晚安~ #晚安# -20250202224649 ·  4 天前  
51好读  ›  专栏  ›  机器学习研究会

逻辑回归算法背后的数学

机器学习研究会  · 公众号  · AI  · 2017-09-18 22:16

正文

逻辑回归算法背后的数学


看完Andrew Ng老师的机器学习公开课后,对于逻辑回归部分,打算写篇学习笔记记录总结一下,也和大家共同分享。



1

基本思能


逻辑回归(Logistic Regression)和线性回归(Linear Regression)的模型和原理是相似的(哈哈,给我的感觉就像是街霸游戏里的Ryu和Ken),按照我的理解,算法大致可以分为以下步骤:


(1)构造一个合适的预测函数,假设记为h函数。该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程非常关键,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式(走势),比如是线性函数还是非线性函数。(例如y=x,y=x2,y=x3…… 等形式的函数)

(2)构造一个损失函数(loss function)并合成一个代价函数(cost function)。损失函数是表示每一个样本上,预测的输出h与训练数据类别(即真实值)y之间的偏差,可以是二者之间的差(h-y),也可以是(h-y)2(貌似这种常用一点,避免了可能出现负数的情况)或者是其他的形式。综合考虑所有训练数据的“损失”,将其求和或者求平均,就变成了代价函数,记为J(θ)函数(这里的参数θ是指预测函数里面的系数)

(3)寻找代价函数最小值并确定参数。显然,我们希望J(θ)函数的值越小越好,因为这表示我们预测的和实际值越小了,预测函数的表现效果就越好,所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,这里要提到的是梯度下降法(Gradient Descent),当然也有其他优秀的算法。



2

推导过程

1

构造预测函数


逻辑回归是一种分类方法,用于两分类问题(即输出只有两种,表示为0和1)。根据上面步骤,需要先找到一个预测函数hθ(x),在这里,我们假设是线性边界的情况,表示形式为:



因为逻辑回归的输出必须是两个值,所以要利用Logistic函数(或称为Sigmoid函数),把输出控制在0到1之间,函数形式为:



它的函数图像为:









请到「今天看啥」查看全文