专栏名称: 极市平台
极市平台是由深圳极视角推出的专业的视觉算法开发与分发平台,为视觉开发者提供多领域实景训练数据库等开发工具和规模化销售渠道。本公众号将会分享视觉相关的技术资讯,行业动态,在线分享信息,线下活动等。 网站: http://cvmart.net/
目录
相关文章推荐
陕西商务  ·  2月1日至2月7日陕西生活必需品市场运行分析 ·  2 天前  
陕西商务  ·  2月1日至2月7日陕西生活必需品市场运行分析 ·  2 天前  
51好读  ›  专栏  ›  极市平台

UCAS、Megvii联合提出OneChart,一个能为自己负责的图表解析模型

极市平台  · 公众号  ·  · 2024-05-27 22:00

正文


《论语》中说:“知之为知之,不知为不知,是知也”。从神经网络兴起以来,人们就没有停止过对这种黑盒模型应用在生产环境的担心。在 AI 1.0 中大部分模型还至少会输出一个置信度得分可供参考;然而对于 AI 2.0 时代的 VLMs 来说,所有的结果以文本的形式吐出,这加重了人们对模型安全性的焦虑。让模型知道自己的能力边界,不要产生致命错误,这点十分必要,也是目前的难点。

图表(柱状图,折线图,饼图)的信息结构化提取(SE) 是对模型可靠性要求极高的任务之一,同时也是 VLM 难解的问题之一。下面是目前领先的一些 VLM 模型(GPT-4V、最新发布的 Reka Core、Gemini 1.5 Pro 以及国产的 Qwen-VL-Max)在图表解析上任务的表现。

经测试(所使用的 Chart 图片均为虚拟图片,不代表任何实际意义),目前这些模型对于 chart 正确理解还有所欠缺,特别是 chart 中的数值不能通过调用 OCR 简单获取的时候。

为此所提出的 OneChart 选取图表 SE 这一任务,展示了一种简单有效的方法。仅通过一个辅助 token 和对应的辅助 decoder 设计,不仅增强了模型的特定能力,还能在推理时对模型的文本输出给出一个 可靠性检查

文章所提的 OneChart 参数量仅 0.2B,但在 SE 任务中可以大幅领先目前的 1.3B~13B 模型。OneChart 还可以作为一种 Chart-Agent 来帮助现有的 LLM 或 VLM 更好的完成下游 QA 任务,例如 LLaVA1.6+OneChart 可以在 ChartQA 数据集上涨点 11.2。

论文题目:

OneChart: Purify the Chart Structural Extraction via One Auxiliary Token

论文地址:

http://arxiv.org/abs/2404.09987

代码地址:

https://github.com/LingyvKong/OneChart

项目主页:

https://onechartt.github.io/



任务和方法介绍
Chart 理解和推理能力是目前 VLM 研究中的重点之一。作者认为目前用 VLM 进行 Chart 解析有两部分需要改进:一是需要充分训练一个真正会看 chart 的 vision encoder;二是在 SE 任务中单纯对文本输出算交叉熵损失不是最优的,比如当 gt 是 7008 时,模型输出 70.8 和 7007 损失是一样的,但显然 7007 是相对可以接受的误差,特别是当 chart 图片中没有明确的数值标注的时候。

如图 1,Onechart 的做法是引入了一个辅助 decoder,并设计 L1 loss 来进行监督。

OneChart 的模型结构如下图,主要包括 vision encoder、OPT-125M、Auxiliary decoder 三部分。Auxiliary decoder 由 3 层 MLP 组成,以 Auxiliary token 的 embedding 作为输入,输出 min-max 归一化后的 chart 数值结果。数值结果部分会计算 L1 loss,文本部分计算 cross-entropy loss,总 loss 是二者相加。

训练分 3 个阶段,第一阶段 pretrain VLM,第二阶段 warm-up auxiliary decoder,第 3 阶段合起来做一次 finetune。由于 Autoregressive model 中的 attention 是 casual 的,Auxiliary token 中的信息可以被后面的 token 隐式的利用,进而增强文本预测中的精度,所以推理时可以选择丢弃辅助 decoder,简单地采用语言模型的输出。

当然,在推理时也可以选择不丢弃辅助 decoder,而是用辅助 decoder 输出的结果和语言模型输出的结果进行可靠性校验:将语言模型输出结果中的数值 min-max 归一化后,与辅助 decoder 输出的结果计算 L1 距离。通过设置阈值判断模型输出的可靠性。更多的技术细节,请查看 OneChart 的论文。



性能展示

OneChart 提取图表信息的量化性能得分如下,其中 Structural Extraction 任务衡量的是模型提取 chart 主体部分 entity 和对应数值的准确性。可以看到 OneChart 的 AP@strict 显著优于其他模型,整体性能也是 SOTA 水平。
下面这个表格展示的是推理时采用可靠性校验筛选出的 purified 预测和原始所有预测的性能 AP 对比。可以看出可靠性校验的筛选能力是显著的。

模型推理效果如下:

作者还进行了 LLM 或 VLM 结合 OneChart 在 ChartQA 上的性能测试,可以看到 OneChart 输出可以让 LLaVA1.5 涨点 32.6,让 LLaVA1.6 涨点 11.2。这表明准确的感知是推理的基石,而现有的 VLMs 在 chart 感知上尚存在提升空间,OneChart 可以作为工具被 LLM/VLMs 调用来增强其在 chart 上的能力。



更多阅读



# 投 稿 通 道 #

让你的文字被更多人看到








请到「今天看啥」查看全文