点击上方
“
小白学视觉
”,选择加"
星标
"或“
置顶
”
重磅干货,第一时间送达
【导语】本文搞了一个小的库,主要是用于定位红外小目标。由于其具有尺度很小的特点,所以可以尝试用点的方式代表其位置。本文主要采用了回归和heatmap两种方式来回归关键点,是一个很简单基础的项目,代码量很小,可供新手学习。
1. 数据来源
数据集
:数据来源自小武,经过小武的授权使用,但不会公开。本项目只用了其中很少一部分共108张图片。
标注工具
:https://github.com/pprp/landmark_annotation
部分样例展示
上图是数据集中的两张图片,红圈代表对应的目标,标注的时候只需要在其中心点一下即可得到该点对应的横纵坐标。
该数据集有一个特点,每张图只有一个目标(不然没法用简单的方法回归),多余一个目标的图片被剔除了。
1 0.42 0.596
以上是一个标注文件的例子,1.jpg对应1.txt
2. 回归确定关键点
回归确定关键点比较简单,网络部分采用手工构建的一个两层的小网络,训练采用的是MSELoss。
这部分代码在:https://github.com/pprp/SimpleCVReproduction/tree/master/simple_keypoint/regression
2.1 数据加载
数据的组织比较简单,按照以下格式组织:
- data - images - 1.jpg - 2.jpg - ... - labels - 1.txt - 2.txt - ...
重写一下Dataset类,用于加载数据集。
class KeyPointDatasets (Dataset) : def __init__ (self, root_dir="./data" , transforms=None) : super(KeyPointDatasets, self).__init__() self.img_path = os.path.join(root_dir, "images" ) # self.txt_path = os.path.join(root_dir, "labels") self.img_list = glob.glob(os.path.join(self.img_path, "*.jpg" )) self.txt_list = [item.replace(".jpg" , ".txt" ).replace( "images" , "labels" ) for item in self.img_list] if transforms is not None : self.transforms = transforms def __getitem__ (self, index) : img = self.img_list[index] txt = self.txt_list[index] img = cv2.imread(img) if self.transforms: img = self.transforms(img) label = [] with open(txt, "r" ) as f: for i, line in enumerate(f): if i == 0 : # 第一行 num_point = int(line.strip()) else : x1, y1 = [(t.strip()) for t in line.split()] # range from 0 to 1 x1, y1 = float(x1), float(y1) tmp_label = (x1, y1) label.append(tmp_label) return img, torch.tensor(label[0 ]) def __len__ (self) : return len(self.img_list) @staticmethod def collect_fn (batch) : imgs, labels = zip(*batch) return torch.stack(imgs, 0 ), torch.stack(labels, 0 )
返回的结果是图片和对应坐标位置。
2.2 网络模型
import torchimport torch.nn as nnclass KeyPointModel (nn.Module) : def __init__ (self) : super(KeyPointModel, self).__init__() self.conv1 = nn.Conv2d(3 , 6 , 3 , 1 , 1 ) self.bn1 = nn.BatchNorm2d(6 ) self.relu1 = nn.ReLU(True ) self.maxpool1 = nn.MaxPool2d((2 , 2 )) self.conv2 = nn.Conv2d(6 , 12 , 3 , 1 , 1 ) self.bn2 = nn.BatchNorm2d(12 ) self.relu2 = nn.ReLU(True ) self.maxpool2 = nn.MaxPool2d((2 , 2 )) self.gap = nn.AdaptiveMaxPool2d(1 ) self.classifier = nn.Sequential( nn.Linear(12 , 2 ), nn.Sigmoid() ) def forward (self, x) : x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.maxpool2(x) x = self.gap(x) x = x.view(x.shape[0
], -1 ) return self.classifier(x)
其结构就是卷积+pooling+卷积+pooling+global average pooling+Linear,返回长度为2的tensor。
2.3 训练
def train (model, epoch, dataloader, optimizer, criterion) : model.train() for itr, (image, label) in enumerate(dataloader): bs = image.shape[0 ] output = model(image) loss = criterion(output, label) optimizer.zero_grad() loss.backward() optimizer.step() if itr % 4 == 0 : print("epoch:%2d|step:%04d|loss:%.6f" % (epoch, itr, loss.item()/bs)) vis.plot_many_stack({"train_loss" : loss.item()*100 /bs}) total_epoch = 300 bs = 10 ######################################## transforms_all = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((360 ,480 )), transforms.ToTensor(), transforms.Normalize(mean=[0.4372 , 0.4372 , 0.4373 ], std=[0.2479 , 0.2475 , 0.2485 ]) ]) datasets = KeyPointDatasets(root_dir="./data" , transforms=transforms_all) data_loader = DataLoader(datasets, shuffle=True , batch_size=bs, collate_fn=datasets.collect_fn) model = KeyPointModel() optimizer = torch.optim.Adam(model.parameters(), lr=3e-4 )# criterion = torch.nn.SmoothL1Loss() criterion = torch.nn.MSELoss() scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30 , gamma=0.1 )for epoch in range(total_epoch): train(model, epoch, data_loader, optimizer, criterion) loss = test(model, epoch, data_loader, criterion) if epoch % 10 == 0 : torch.save(model.state_dict(), "weights/epoch_%d_%.3f.pt" % (epoch, loss*1000 ))
loss部分使用Smooth L1 loss或者MSE loss均可。
MSE Loss:
Smooth L1 Loss:
2.4 测试结果
3. heatmap确定关键点
这部分代码很多参考了CenterNet,不过曾经尝试CenterNet中的loss在这个问题上收敛效果不好,所以参考了kaggle人脸关键点定位的解决方法,发现使用简单的MSELoss效果就很好。
3.1 数据加载
这部分和CenterNet构建heatmap的过程类似,不过半径的确定是人工的。因为数据集中的目标都比较小,半径的范围最大不超过半径为30个像素的圆。
class KeyPointDatasets (Dataset) : def __init__ (self, root_dir="./data" , transforms=None) : super(KeyPointDatasets, self).__init__() self.down_ratio = 1 self.img_w = 480 // self.down_ratio self.img_h = 360 // self.down_ratio self.img_path = os.path.join(root_dir, "images" ) self.img_list = glob.glob(os.path.join(self.img_path, "*.jpg" )) self.txt_list = [item.replace(".jpg" , ".txt" ).replace( "images" , "labels" ) for item in self.img_list] if transforms is not None : self.transforms = transforms def __getitem__ (self, index) : img = self.img_list[index] txt = self.txt_list[index] img = cv2.imread(img) if self.transforms: img = self.transforms(img) label = [] with open(txt, "r" ) as f: for i, line in enumerate(f): if i == 0 : # 第一行 num_point = int(line.strip()) else : x1, y1 = [(t.strip()) for t in line.split()] # range from 0 to 1 x1, y1 = float(x1), float(y1) cx, cy = x1 * self.img_w, y1 * self.img_h heatmap = np.zeros((self.img_h, self.img_w)) draw_umich_gaussian(heatmap, (cx, cy), 30 ) return img, torch.tensor(heatmap).unsqueeze(0 ) def __len__ (self) : return len(self.img_list) @staticmethod def collect_fn (batch) : imgs, labels = zip(*batch) return torch.stack(imgs, 0 ), torch.stack(labels, 0 )
核心函数是draw_umich_gaussian,具体如下:
def gaussian2D (shape, sigma=1 ) : m, n = [(ss - 1. ) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1 , -n:n + 1 ] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h 0 # 限制最小的值 return hdef draw_umich_gaussian (heatmap, center, radius, k=1 ) : diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6 ) # 一个圆对应内切正方形的高斯分布 x, y = int(center[0 ]), int(center[1 ]) width, height = heatmap.shape left, right = min(x, radius), min(width - x, radius + 1 ) top, bottom = min(y, radius), min(height - y, radius + 1 ) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0 : # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) # 将高斯分布覆盖到heatmap上,取最大,而不是叠加 return heatmap
sigma参数直接沿用了CenterNet中的设置,没有调节这个超参数。
3.2 网络结构
网络结构参考了知乎上一个复现YOLOv3中提到的模块,Sematic Embbed Block(SEB)用于上采样部分,将来自低分辨率的特征图进行上采样,然后使用3x3卷积和1x1卷积统一通道个数,最后将低分辨率特征图和高分辨率特征图相乘得到融合结果。
class SematicEmbbedBlock (nn.Module) : def __init__ (self, high_in_plane, low_in_plane, out_plane) : super(SematicEmbbedBlock, self).__init__() self.conv3x3 = nn.Conv2d(high_in_plane, out_plane, 3 , 1 , 1 ) self.upsample = nn.UpsamplingBilinear2d(scale_factor=2 ) self.conv1x1 = nn.Conv2d(low_in_plane, out_plane, 1 ) def forward (self, high_x, low_x) : high_x = self.upsample(self.conv3x3(high_x)) low_x = self.conv1x1(low_x) return high_x * low_xclass KeyPointModel (nn.Module) : """ downsample ratio=2 """ def __init__ (self) : super(KeyPointModel, self).__init__() self.conv1 = nn.Conv2d(3 , 6 , 3 , 1 , 1 ) self.bn1 = nn.BatchNorm2d(6 ) self.relu1 = nn.ReLU(True ) self.maxpool1 = nn.MaxPool2d((2 , 2 )) self.conv2 = nn.Conv2d(6 , 12 , 3 , 1 , 1 ) self.bn2 = nn.BatchNorm2d(12 ) self.relu2 = nn.ReLU(True ) self.maxpool2 = nn.MaxPool2d((2 , 2 )) self.conv3 = nn.Conv2d(12 , 20 , 3 , 1 , 1 ) self.bn3 = nn.BatchNorm2d(20 ) self.relu3 = nn.ReLU(True ) self.maxpool3 = nn.MaxPool2d((2 , 2 )) self.conv4 = nn.Conv2d(20 , 40 , 3 , 1 , 1 ) self.bn4 = nn.BatchNorm2d(40 ) self.relu4 = nn.ReLU(True ) self.seb1 = SematicEmbbedBlock(40 , 20 , 20 ) self.seb2 = SematicEmbbedBlock(20 , 12 , 12 ) self.seb3 = SematicEmbbedBlock(12 , 6 , 6 ) self.heatmap = nn.Conv2d(6 , 1 , 1 ) def forward (self, x) : x1 = self.conv1(x) x1 = self.bn1(x1) x1 = self.relu1(x1) m1 = self.maxpool1(x1) x2 = self.conv2(m1) x2 = self.bn2(x2) x2 = self.relu2(x2) m2 = self.maxpool2(x2) x3 = self.conv3(m2) x3 = self.bn3(x3) x3 = self.relu3(x3) m3 = self.maxpool3(x3) x4 = self.conv4(m3) x4 = self.bn4(x4) x4 = self.relu4(x4) up1 = self.seb1(x4, x3) up2 = self.seb2(up1, x2) up3 = self.seb3(up2, x1) out = self.heatmap(up3) return out
网络模型也是自己写的小网络,用了四个卷积层,三个池化层,然后进行了三次上采样。最终输出分辨率和输入分辨率相同。
3.3 训练过程
训练过程和基于回归的方法几乎一样,代码如下:
datasets = KeyPointDatasets(root_dir="./data" , transforms=transforms_all) data_loader = DataLoader(datasets, shuffle=True , batch_size=bs, collate_fn=datasets.collect_fn) model = KeyPointModel()if torch.cuda.is_available(): model = model.cuda() optimizer = torch.optim.Adam(model.parameters(), lr=3e-3 ) criterion = torch.nn.MSELoss() # compute_loss scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30 , gamma=0.1 )for epoch in range(total_epoch): train(model, epoch, data_loader, optimizer, criterion, scheduler) loss = test(model, epoch, data_loader, criterion) if epoch % 5 == 0 : torch.save(model.state_dict(), "weights/epoch_%d_%.3f.pt" % (epoch, loss*10000 ))
用的是MSELoss进行监督,训练曲线如下:
训练过程中的loss曲线
3.4 测试过程
测试过程和CenterNet的推理过程一致,也用到了3x3的maxpooling来筛选极大值点
for iter, (image, label) in enumerate(dataloader): # print(image.shape) bs = image.shape[0 ] hm = model(image) hm = _nms(hm) hm = hm.detach().numpy() for i in range(bs): hm = hm[i] hm = np.maximum(hm, 0