专栏名称: 学姐带你玩AI
这里有人工智能前沿信息、算法技术交流、机器学习/深度学习经验分享、AI大赛解析、大厂大咖算法面试分享、人工智能论文技巧、AI环境工具库教程等……学姐带你玩转AI!
目录
相关文章推荐
泉安安海在线  ·  泉州晋江国际机场最新通告 ·  昨天  
泉安安海在线  ·  泉州晋江国际机场最新通告 ·  昨天  
海峡都市报闽南新闻  ·  36个教学班!新增学位1800个!泉州九中城 ... ·  3 天前  
海峡都市报闽南新闻  ·  36个教学班!新增学位1800个!泉州九中城 ... ·  3 天前  
海峡都市报闽南新闻  ·  事发泉州!一皮卡车突然冲进商场,现场画面曝光 ·  3 天前  
51好读  ›  专栏  ›  学姐带你玩AI

不卷且创新idea:KAN+特征提取!10篇高分套路拆解,快来抄作业!

学姐带你玩AI  · 公众号  ·  · 2024-10-20 18:18

正文

今天和大家分享一种创新的深度学习技术: KAN+特征提取。

这种技术通过引入KAN来增强模型的特征处理能力,借由KAN的自适应激活函数,动态调整数据特性,从而有效提取更加准确的特征,实现更高性能的模型表现。

这种优势让KAN+特征提取在图像分类、目标检测、语义分割等任务中表现尤为突出,再加上结合带来的 强大性能和效率 ,让它一跃成为了 CV领域一个新兴的研究热点,拥有很大的创新空间。

目前已经有成果表明,KAN+特征提取效果出色,这里为了帮大家省了查资料的时间,我挑选了 最新的 10篇 论文 给大家参考,idea和效果都展示了,想发论文的同学抓紧啦。

扫码添加小享, 回复“ KAN特征

免费获取 全部论文+开源代码

iKAN: Global Incremental Learning with KAN for Human Activity Recognition Across Heterogeneous Datasets

方法: 论文介绍了增量学习框架iKAN,它结合了KAN进行特征提取,用于跨不同数据集的人体活动识别。iKAN框架通过使用KAN代替传统的MLP作为分类器,利用了样条的局部可塑性和全局稳定性,解决了现有方法在处理跨数据集任务时遗忘问题。

创新点:

  • 用KAN替换传统的多层感知器(MLP),以提高模型的局部可塑性和全局稳定性。
  • 增加了一个特征重分配层,帮助模型适应新任务的输入,同时保持对旧任务的记忆。
  • 设计了一个能够处理不同传感器数据的多编码器架构,并通过单一分类器输出一致的结果。

FourierKAN-GCF: Fourier Kolmogorov-Arnold Network--An Effective and Efficient Feature Transformation for Graph Collaborative Filtering

方法: 论文提出了一种名为FourierKAN-GCF的图推荐模型。Fourier KAN利用傅里叶系数代替标准KAN中的样条函数,以降低训练难度并增强表示能力。这种方法通过将KAN与特征提取相结合,旨在提高图协同过滤任务的性能。

创新点:

  • 引入了FourierKAN,替代传统的多层感知器(MLP)用于图卷积网络(GCN)中的特征变换。此方法增强了图协同过滤(GCF)的表现力,同时简化了训练过程。
  • 采用消息丢弃和节点丢弃策略,以提高模型的表示能力和鲁棒性,增强了模型在不同数据集上的性能表现。

扫码添加小享, 回复“ KAN特征

免费获取 全部论文+开源代码

GraphKAN: Enhancing Feature Extraction with Graph Kolmogorov Arnold Networks

方法: 论文介绍了一种名为GraphKAN的新方法,它结合了图神经网络和KANs来增强特征提取。GraphKAN通过用KANs替代MLPs和激活函数,提高了非线性能力和表示能力,尤其在处理图形数据时更为有效。

创新点:

  • 初次将KAN应用于图神经网络(GNN),替代传统的多层感知器(MLP),从而解决信息损失问题。
  • 通过使用基于样条的单变量函数作为可学习的激活函数,提高了模型的效率和可解释性。
  • 通过用KAN替代MLP和固定激活函数,消除了ReLU等激活函数在表示能力上的限制。

Initial Investigation of Kolmogorov-Arnold Networks (KANs) as Feature Extractors for IMU Based Human Activity Recognition







请到「今天看啥」查看全文