(点击
上方蓝字
,快速关注我们)
来
源:
ThoughtWorks / 邱俊涛
insights.thoughtworkers.org/why-good-programmers-like-the-command-line/
如有好文章投稿,请点击 → 这里了解详情
优秀的程序员
要给优秀的程序员下一个明确的定义无疑是一件非常困难的事情。擅长抽象思维、动手能力强、追求效率、喜欢自动化、愿意持续学习、对代码质量有很高的追求等等,这些维度都有其合理性,不过又都略显抽象和主观。
(图片来自:http://t.cn/R6I1yhJ)
我对于一个程序员是否优秀,也有自己的标准,那就是TA对命令行的熟悉/喜爱程度。这个特点可以很好的看出TA是否是一个优秀的(或者潜在优秀的)程序员。我周围就有很多非常牛的程序员,无一例外都非常擅长在命令行中工作。那什么叫熟悉命令行呢?简单来说,就是90%的日常工作内容可以在命令行完成。
当然,喜欢/习惯使用命令行可能只是表象,其背后包含的实质才是优秀的程序员之所以优秀的原因。
自动化
Perl语言的发明者Larry Wall有一句名言:
The three chief virtues of a programmer are: Laziness, Impatience and Hubris. – Larry Wall
懒惰(Laziness)这个特点位于程序员的三大美德之首:唯有懒惰才会驱动程序员尽可能的将日常工作自动化起来,解放自己的双手,节省自己的时间。相比较而言,不得不说,GUI应用天然就是为了让自动化变得困难的一种设计(此处并非贬义,GUI有着自己完全不同的目标群体)。
(图片来自:http://t.cn/R6IBgYV)
GUI更强调的是与人类的直接交互:通过视觉手段将信息以多层次的方式呈现,使用视觉元素进行指引,最后系统在后台进行实际的处理,并将最终结果以视觉手段展现出来。
这种更强调交互过程的设计初衷使得自动化变得非常困难。另一方面,由于GUI是为交互而设计的,它的响应就不能太快,至少要留给操作者反应时间(甚至有些用户操作需要人为的加入一些延迟,以提升用户体验)。
程序员的日常工作
程序员除了写代码之外,还有很多事情要做,比如自动化测试、基础设施的配置和管理、持续集成/持续发布环境,甚至有些团队还需要做一些与运维相关的事情(线上问题监控,环境监控等)。
-
开发/测试
-
基础设施管理
-
持续集成/持续发布
-
运维(监控)工作
-
娱乐
而这一系列的工作背后,都隐含了一个自动化的需求。在做上述工作时,优秀的程序员会努力将其自动化,如果有工具就使用工具;如果没有,就开发一个新的工具。这种努力让一切都尽可能自动化起来的哲学起源于UNIX世界。
而UNIX哲学的实际体现则是通过命令行来完成的。
Where there is a shell, there is a way.
UNIX编程哲学
关于UNIX哲学,其实坊间有多个版本,这里有一个比较详细的清单。虽然有不同的版本,但是有很多一致的地方:
-
小即是美
-
让程序只做好一件事
-
尽可能早地创建原型(然后逐步演进)
-
数据应该保存为文本文件
-
避免使用可定制性低下的用户界面
审视这些条目,我们会发现它们事实上促成了自动化一切的可能性。这里列举一些小的例子,我们来看看命令行工具是如何通过应用这些哲学来简化工作、提高效率的。一旦你熟练掌握这些技能,就再也无法离开它,也再也忍受不了低效而复杂的各种GUI工具了。
命令行如何提升效率
一个高阶计算器
在我的编程生涯早期,读过的最为振奋的一本书是《UNIX编程环境》,和其他基本UNIX世界的大部头比起来,这本书其实还是比较小众的。我读大二的时候这本书已经出版了差不多22年(中文版也已经有7年了),有一些内容已经过时了,比如没有返回值的main函数、外置的参数列表等等,不过在学习到HOC(High Order Calculator)的全部开发过程时,我依然被深深的震撼到了。
简而言之,这个HOC语言的开发过程需要这样几个组件:
-
词法分析器lex
-
语法分析器yacc
-
标准数学库stdlib
另外还有一些自定义的函数等,最后通过make连接在一起。我跟着书上的讲解,对着书把所有代码都敲了一遍。所有的操作都是在一台很老的IBM的ThinkPad T20上完成的,而且全部都在命令行中进行(当然,还在命令行里听着歌)。
这也是我第一次彻底被UNIX的哲学所折服的体验:
-
每个工具只做且做好一件事
-
工具可以协作起来
-
一切面向文本
下面是书中的Makefile脚本,通过简单的配置,就将一些各司其职的小工具协作起来,完成一个编程语言程序的预编译、编译、链接、二进制生成的动作。
YFLAGS
= -
d
OBJS
=
hoc
.
o
code
.
o
init
.
o
math
.
o
symbol
.
o
hoc5
:
$(
OBJS
)
cc
$(
OBJS
)
-
lm
-
o
hoc5
hoc
.
o
code
.
o
init
.
o
symbol
.
o
:
hoc
.
h
code
.
o
init
.
o
symbol
.
o
:
x
.
tab
.
h
x
.
tab
.
h
:
y
.
tab
.
h
-
cmp
-
s
x
.
tab
.
h
y
.
tab
.
h
||
cp
y
.
tab
.
h
x
.
tab
.
h
pr
:
hoc
.
y
hoc
.
h
code
.
c
init
.
c
math
.
c
symbol
.
c
@
pr
$?
@
touch pr
clean
:
rm
-
f
$(
OBJS
)
[
xy
].
tab
.[
ch
]
虽然现在来看,这本书的很多内容已经过期(特别是离它第一次出版已经过去了近30年),有兴趣的朋友可以读一读。这里有一个Lex/Yacc的小例子的小例子,有兴趣的朋友可以看看。
当然,如果你使用现在最先进的IDE(典型的GUI工具),其背后做的事情也是同样的原理:生成一个Makefile,然后在幕后调用它。
基础设施自动化
开发过程中,工程师还需要关注的一个问题是:软件运行的环境。我在学生时代刚开始学习Linux的时候,会在Windows机器上装一个虚拟机软件VMWare,然后在VMWare中安装一个Redhat Linux 9。
(图片来自:http://t.cn/R6IBSAu)
这样当我不小心把Linux玩坏了之后,只需要重装一下就行了,不影响我的其他数据(比如课程作业、文档之类)。不过每次重装也挺麻烦,需要找到iso镜像文件,再挂载到本地的虚拟光驱上,然后再用VMWare来安装。
而且这些动作都是在GUI里完成的,每次都要做很多重复的事情:找镜像文件,使用虚拟光驱软件挂载,启动VMWare,安装Linux,配置个人偏好,配置用户名/密码等等。熟练之后,我可以在30 - 60分钟内安装和配置好一个新的环境。
Vagrant
后来我就发现了Vagrant,它支持开发者通过配置的方式将机器描述出来,然后通过命令行的方式来安装并启动,比如下面这个配置:
VAGRANTFILE_API_VERSION
=
"2"
Vagrant
.
configure
(
VAGRANTFILE_API_VERSION
)
do
|
config
|
config
.
vm
.
box
=
"precise64"
config
.
vm
.
network
"private_network"
,
:
ip
=>
"192.168.2.100"
end
它定义了一个虚拟机,使用Ubuntu Precise 64的镜像,然后为其配置一个网络地址192.168.2.100,定义好之后,我只需要执行:
$
vagrant
up
我的机器就可以在几分钟内装好,因为这个动作是命令行里完成的,我可以在持续集成环境里做同样的事情 – 只需要一条命令。定义好的这个文件可以在团队内共享,可以放入版本管理,团队里的任何一个成员都可以在几分钟内得到一个和我一样的环境。
Ansible
一般,对于一个软件项目而言,一个全新的操作系统基本上没有任何用处。为了让应用跑起来,我们还需要很多东西。比如Web服务器、Java环境、cgi路径等,除了安装一些软件之外,还有大量的配置工作要做,比如apache httpd服务器的文档根路径,JAVA_HOME环境变量等等。
(图片来自:http://t.cn/R6IBZKm)
这些工作做好了,一个环境才算就绪。我记得在上一个项目上,不小心把测试环境的Tomcat目录给删除了,结果害的另外一位同事花了三四个小时才把环境恢复回来(包括重新安装Tomcat,配置一些JAVA_OPTS,应用的部署等)。
不过好在我们有很多工具可以帮助开发者完成环境的自动化准备,比如:Chef、 Puppet、Ansible。只需要一些简单的配置,然后结合一个命令行应用,整个过程就可以自动化起来了:
-
name
:
setup custom repo
apt
:
pkg
=
python
-
pycurl
state
=
present
-
name
:
enable carbon
copy
:
dest
=/
etc
/
default
/
graphite
-
carbon
content
=
'CARBON_CACHE_ENABLED=true'
-
name
:
install graphite
and
deps
apt
:
name
=
{{
item
}}
state
=
present
with_items
:
packages
-
name
:
install graphite
and
deps
pip
:
name
=
{{
item
}}
state
=
present
with_items
:
python_packages
-
name
:
setup apache
copy
:
src
=
apache2
-
graphite
.
conf
dest
=/
etc
/
apache2
/
sites
-
available