(1)Sattler T, Leibe B, Kobbelt L. Efficient & effective prioritized matching for large-scale image-based localization[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(9): 1744-1756.
(2)Svärm L, Enqvist O, Kahl F, et al. City-scale localization for cameras with known vertical direction[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(7): 1455-1461.
(3)Dusmanu M, Miksik O, Schönberger J L, et al. Cross-descriptor visual localization and mapping[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 6058-6067.
(4)Liu L, Li H, Dai Y. Efficient global 2d-3d matching for camera localization in a large-scale 3d map[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2372-2381.
(5)Sattler T, Leibe B, Kobbelt L. Improving image-based localization by active correspondence search[C]//Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I 12. Springer Berlin Heidelberg, 2012: 752-765.
(6)Taira H, Okutomi M, Sattler T, et al. InLoc: Indoor visual localization with dense matching and view synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7199-7209.
(7)Camposeco F, Sattler T, Cohen A, et al. Toroidal constraints for two-point localization under high outlier ratios[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4545-4553.
(8)Geppert M, Larsson V, Speciale P, et al. Privacy preserving localization and mapping from uncalibrated cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1809-1819.
(9)Yu H, Feng Y, Ye W, et al. Improving Feature-based Visual Localization by Geometry-Aided Matching[J]. arXiv preprint arXiv:2211.08712, 2022.
(1)Mera-Trujillo M, Smith B, Fragoso V. Efficient scene compression for visual-based localization[C]//2020 International Conference on 3D Vision (3DV). IEEE, 2020: 1-10.
(2)Camposeco F, Cohen A, Pollefeys M, et al. Hybrid scene compression for visual localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7653-7662.
(3)Yang L, Shrestha R, Li W, et al. Scenesqueezer: Learning to compress scene for camera relocalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 8259-8268.
Micusik B, Wildenauer H. Descriptor free visual indoor localization with line segments[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3165-3173.
Yoon S, Kim A. Line as a visual sentence: context-aware line descriptor for visual localization[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8726-8733.
Kendall A, Grimes M, Cipolla R. Posenet: A convolutional network for real-time 6-dof camera relocalization[C]//Proceedings of the IEEE international conference on computer vision. 2015: 2938-2946.
Brachmann E, Rother C. Expert sample consensus applied to camera re-localization[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 7525-7534.
Brachmann E, Krull A, Nowozin S, et al. Dsac-differentiable ransac for camera localization[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 6684-6692.
Huang Z, Zhou H, Li Y, et al. Vs-net: Voting with segmentation for visual localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6101-6111.
Von Stumberg L, Wenzel P, Yang N, et al. LM-Reloc: Levenberg-Marquardt based direct visual relocalization[C]//2020 International Conference on 3D Vision (3DV). IEEE, 2020: 968-977.
高精地图:
这类地图多用在汽车上,多在自动驾驶场景中见到。
优点是:因为偏向于商业应用,定位精度一般很高。
缺点是:制作地图的成本很高,一般多由大公司搞了。
相关算法参考文献如下:
Qin T, Chen T, Chen Y, et al. Avp-slam: Semantic visual mapping and localization for autonomous vehicles in the parking lot[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 5939-5945.
Jeong J, Cho Y, Kim A. Hdmi-loc: Exploiting high definition map image for precise localization via bitwise particle filter[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6310-6317.
Guo X, Hu J, Chen J, et al. Semantic histogram based graph matching for real-time multi-robot global localization in large scale environment[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8349-8356.
Zhang C, Liu H, Xie Z, et al. AVP-Loc: Surround view localization and relocalization based on HD vector map for automated valet parking[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021: 5552-5559.
2D导航地图:
这种地图就是我们平时导航用的地图,比如百度地图、高德地图这些。
优点是:因为其地图也足够抽象,其地图内存占用也很小,而且这种地图形式更符合我们直观上的理解。
缺点是:估计的自由度不高,一般为两自由度。精度也有待提升。
相关算法参考文献如下:
Sarlin P E, DeTone D, Yang T Y, et al. OrienterNet: Visual Localization in 2D Public Maps with Neural Matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 21632-21642.