那如果我们用更基本的东西来完成任务呢?比如说将圆切成几块,然后拼成一个正方形?那虽然不能说是“尺规作图”,但在某种意义上比尺规作图更基本,不是吗?
数学家塔斯基(Alfred Tarski)在 1925 年提出的,正是这样一个挑战。用更精确的数学语言来说,就是要求把平面上的单位圆盘分割成有限块,每一块是一个点集,然后通过平移和旋转这些保持面积的方法,将这些点集拼成面积相同的正方形。怎么分割都无所谓,甚至是没办法做出来的分割也可以,唯独是“有限块”这种限制不能去掉。如果能分割成无限块的话,那就太简单了,只要把单位圆盘“磨成细末”,每一块都只有一个点的话,那别说是拼成正方形,就是拼成一幅对联也问题不大。即使是犯规,也是有底线的。
这乍听起来是个很无理的问题。别的先不说,要把圆变成正方形,总要先处理那弯弯的圆周吧?看起来无论怎么切,只要是有限块,那恐怕也不能将弯曲的边界拗成直线。实际上,可以证明,如果只用剪刀这样的工具的话(从数学上来说就是如果每一块的边界都是简单闭合曲线的话),这个任务是不可能做到的。但是,原来的题目中也没有限制只能用剪刀。只要是“点集”,无论是否连在一起,都符合要求,所以希望还有,不过就是更“犯规”一点而已。