专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
财经网科技  ·  算力平台纷纷接入通义 ... ·  2 天前  
财经网科技  ·  算力平台纷纷接入通义 ... ·  2 天前  
宝玉xp  ·  Steve Yegge 继续评价 ... ·  2 天前  
黄建同学  ·  Advanced LLM Agents ... ·  2 天前  
爱可可-爱生活  ·  【[197星]Banbot:一款高性能、多策 ... ·  3 天前  
黄建同学  ·  #尹烨预测夸克将成为全能型Agent# ... ·  3 天前  
51好读  ›  专栏  ›  机器之心

专访 | Drive.ai 联合创始人王弢:「我们不依赖深度学习,而是深度学习优先」

机器之心  · 公众号  · AI  · 2017-10-29 12:20

正文

机器之心原创

作者:高静宜

编辑:吴欣

10 月 24 日,机器之能对 Drive.ai 联合创始人王弢进行了专访,他分享了 Drive.ai 在技术方案方面的创新、商业化合作进展以及公司的下一步。


如果你关注自动驾驶领域,一个雨夜穿行美国加利福尼亚州山景城街道的自动行车 Demo 可能在今年 2 月进入过你的视野,发布这段 4 分钟视频的公司 Drive.ai 也正式露面。


尽管成立于 2015 年 4 月,但在这之前的近一年时间公司专注于研发,鲜少为外界知晓。该公司创始团队来自斯坦福大学人工智能实验室,他们想要研发出依靠深度学习技术的全栈式自动驾驶解决方案,让普通汽车能够升级为自动驾驶汽车。


在完成不同路况的路测之后,Drive.ai 进一步完善技术研发,与此同时,公司开始探索商业化的落地。今年 9 月,公司曾宣布与美国第二大打车服务商 Lyft 展开合作,并在加州推出试点计划。


不到一个月时间,Drive.ai 获得在东南亚占据垄断地位的打车服务商 Grab 1500 万美元的投资,还透露将在新加坡设立办事处。在此之前的 6 月,公司完成 5000 万美元 B 轮融资,由恩颐投资(NEA)领投,北极光创投、纪源资本等跟投,Google Brain 创始人、前百度首席科学家吴恩达也加入董事会。


10 月 24 日,机器之能对 Drive.ai 联合创始人王弢进行了专访,他分享了 Drive.ai 在技术方案方面的创新、商业化合作进展以及公司的下一步。


Drive.ai 联合创始人王弢


更新传感器解决方案,激光雷达数目减少 30% 到 50%


在之前公布的信息中,Drive.ai 的传感器方案采用了 9 个高清摄像头、2 个雷达和 6 个 16 线 Velodyne 激光雷达。那么在进行试点计划后,目前的传感器方案是否有所更新调整?

目前我们最新一代的传感器整合系统会减少 30% 到 50% 的激光雷达数量,即 4 个左右,摄像头和毫米波雷达的数目则基本保持不变。因为从成本的角度出发,摄像头和毫米波雷达这两个跟激光雷达比就是九牛一毛,如果要做成本的优化,那么第一个入手的肯定是激光雷达。我们很高兴看到国内有很多激光雷达创业公司的兴起,这对于国内外自动驾驶产业的推进都是一个很好的现象。目前我们也在与国内激光雷达厂商接触。

在更新传感器方案时,都会从哪些方面进行考量?

我们觉得冗余度肯定还是需要的,冗余度越多,可靠性越强。我们不会只采用一个激光雷达,这不是我们的技术路线。因为目前所有主流的激光雷达都没有达到车规级,所以要让可靠性满足 L4 的要求,冗余度是必须存在的。如果一个激光雷达有 0.1% 出故障的可能性,那么两个同时出故障的可能性则是一百万分之一,三、四个同时故障的可能性就更是微乎其微了。通过这样的方式,可靠性大大提高,我们就无需自己专门设计、制造或是购买一个达到车规级的激光雷达了。

当然,我们并不是把这些硬件简单地堆积起来,而是需要软件的支持。以 RAID 为例,它是一种独立磁盘构成的具有冗余能力的阵列。一般商用需要非常大的硬盘,安全级别可以达到服务器级别,但这个方案是非常昂贵的。现在主流的解决方案是把多个非常普通的硬盘串起来,上层用软件系统重新进行架构,可以保证在一个或者两个硬盘出故障的情况下,不会影响文件系统的使用。这实现了用多个比较低廉的硬件加上软件的优化,达到昂贵硬件的水平,甚至能够超过昂贵硬件的可靠度。我们在自动驾驶领域的解决思路亦是如此。

一些自动驾驶技术公司选择使用 64 线激光雷达,而 Drive.ai 则一直采用 16 线的原因有哪些?


激光雷达的发展非常快,单个激光雷达的可靠性也在提升,不过目前还没有出现达到车规级或者满足 L4 可靠性要求的产品。如果用单个激光雷达,很多创业公司、大型科技公司都会选择使用 64 线。但是 64 线激光雷达也存在一些问题,比如价格较高,暴露在外的旋转机构的可靠性比较差。

我们从一开始就没有选择这个路线,一个是 64 线激光雷达的产能可能会受到一些限制,很多都是人工在打造,没有自动化的生产线;二是大批新兴的互联网巨头追捧这个传感器。因为想做样车的话,这种传感器是最快得到结果的最佳选择,但一旦陷进这个坑想跳出来就需要花上一定功夫了。所以我们一开始就选择了 16 线激光雷达。16 线有几点优势,一是有较高的灵活性,对于多个传感器的安装方案来说比较灵活;二是没有暴露在外的旋转机构,虽然内部还是有机械机构 在动,不过不暴露在外的话还是有一定的保护作用;三是 16 线的生产线自动化程度比较高。其实 Velodyne 下一代主打产品的核心技术也是基于 16 线的。


如何看待未来固态激光雷达的发展以及所带来的冲击与挑战?

到目前为止,我们还没有看到比较靠谱的固态激光雷达。有些公司愿景描绘的非常好,但我们还没有接触到可用的实物。如果激光雷达能够实现固态,那么整个成本就降下来了,可能几百元成本的固态激光雷达就能够提供丰富的三维信息,这对我们来说将会是重大的利好。

我们一开始选择的就是多个传感器融合进行冗余设计的路线。固态激光雷达的落地有助于我们使用更多的传感器,那么冗余度也就更高了。我觉得对于一开始就选择采用单个传感器的公司可能会形成一定的冲击,因为他们的整个算法可能是基于 64 线的,或是自己设计了一个高精度的激光雷达。

Drive.ai 使用深度学习技术,特别是在感知和探测上面用了大量的深度学习算法。深度学习有一个优势是对数据本身的形式没有那么挑剔。举例来说,深度学习在图像识别、语音识别、自然语言处理等方面使用的都是很相似的网络结构,喂给模型不同的数据就能实现不同的效果。同理,我们用深度学习也可以很快地适应不同激光雷达的不同组合。


深度学习优先

对于深度学习算法的使用,Drive.ai 有哪些考量?

我们并不是完全使用深度学习,而是深度学习优先。解决困难问题的时候,我们会优先考虑采用深度学习算法。我们整个公司内部人员的配置,以及搭建基础设施架构的时候也是首先考虑深度学习的需求。业界有一些很激进的深度学习方案,例如英伟达把摄像头输出的图像直接当成控制信息。我认为这是一个不错的研究方向,但要真正实现 L4 无人驾驶,这个方法的挑战性还是很大的。我们的方案是把传感器输出的信号当成决策信号。







请到「今天看啥」查看全文