智能座舱与自动驾驶资讯与资料,实时,权威,专业。 |
进入资料分享群,后台回复:入群
本文提供报告 限时下载 ,请查看文后提示。
以下为报告全部内容:
电动汽车是由多个子系统构成的一个复杂系统,主要包括电池、电机等动力系统,以及其它附件如空调、助力转向等,各子系统几乎都通过自己的控制单元来完成各自功能和目标。电动汽车上的电子设备越来越多,控制系统也越来越复杂。为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配。因此,电动汽车需要一个整车控制系统来管理车辆的各个部件。整车控制器可以保证车辆安全可靠行驶,提高控制系统间数据传输效率具有重要意义。该系统可实现电机驱动控制、温度控制、能量管理控制等功能,主要由传感器输入与开关系统、系统驱动输出、控制单元输出系统等子系统组成。
整车控制器通过采集加速踏板信号、制动踏板信号和挡位开关信号等驾驶信息,同时接收CAN总线上电机控制器和电池管理系统发出的数据,并结合整车控制策略对这些信息进行分析和判断,提取驾驶员的驾驶意图和车辆运行状态信息,通过运算分析后做出决策,合理分配动能,控制车辆充电、加减速、能量回收及故障检测等工作,使车辆运行在最佳状态。
整车控制系统主要由整车控制器统一协调管理,各控制器之间通过CAN网络进行信息交互,共同实现整车的功能控制。整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电 。
由整车控制器、电机控制器、动力电池管理系统、车身控制管理系统,信息显示系统和通讯系统等组成。各子系统之间的信息传递通过网络通讯系统实现。
整车控制器和各个控制器直接CAN网络连接:
高速CAN通讯:整车控制器和电池控制器通讯、整车控制器和电机控制器通讯、整车控制器和车载充电机通讯、整车控制器和DC/DC转换器通讯、整车控制器和电动空调压缩机模块通讯、整车控制器和车身控制器通讯、整车控制器和EBS/ESP通讯、整车控制器和电动转向控制器通讯、整车控制器和安全气囊控制器通讯;
中速CAN通讯:整车控制器和组合仪表模块通讯、整车控制器和空调控制模块通讯、整车控制器和导航控制通讯、整车控制器和中控显示通讯等;
整车控制器主要功能包括:整车上下电、控制模式判断及行驶控制、整车网络化管理、制动能量回馈控制、整车能量管理和优化、故障诊断和处理、车辆状态监测和显示等。
整车控制系统根据钥匙门位置进行上下电控制,实现控制系统初始化、自检、充电状态判断等功能。整车控制器由低压蓄电池供电,其上电下电状态由仪表板上的低压开关进行控制。整车模式分为外接充电模式、非充电模式和紧急停机模式。系统充电状态和非充电状态由充电连接线进行判断,充电线已连接为充电状态,否则为非充电状态,紧急停机模式为整车处于最高故障等级进行下电处理。
低压上下电:VCU可以通过检测点火开关信号、充电唤醒信号或CAN信号等被唤醒,发送报文或硬线唤醒其他节点进行低压上下电操作。
高压上下电:整车控制器采集点火开关状态、整车故障状态、电池与电机控制器反馈、整车主正主负继电器反馈预充继电器反馈等信号,对动力电池主正主负、预充继电器进行控制,完成高压上下电操作。
上电控制策略:
初始化:VCU上电后进行基本配置和自检,完成后进入下一个过程 唤醒BMS:VCU控制唤醒BMS,等待与BMS的通讯,通讯连接且电池允许上电后进入下一个判断过程;若BMS报故障,则终止上电过程,整车进入BMS故障模式。
唤醒MCU:VCU发布命令唤醒MCU,等待与CAN通信连接,通信正常连接后,接收MCU上报的故障状态,若MCU允许上电,则完成高压电上电前的准备过程,进入高压电上电控制;
实时监控驾驶员的钥匙请求,当keyon==0后,进入低压电的下电流程。
下电控制策略:
降负载阶段:将DC/DC和气泵disable,同时驱动电机扭矩降低,当驱动电机转速小于某个值后,进入高压电下电流程;
高压电下电阶段:VCU监控判断满足条件之后,发送命令给BMS进行下电,同时VCU监控高压电状态,当高压电下电完成之后,进入低压下电阶段;
低压下电阶段:VCU向BMS、MCU发送下电请求,等待BMS、MCU进行数据保存,当BMS、MCU允许下电之后,对VCU进行下。
整车控制器通过各种状态信息(启动钥匙、充电信号、加速踏板位置、当前车速和整车是否有故障信息等)判断当前需要的整车工作模式(充电模式和行驶模式)。
然后根据当前的参数和状态及前一段时间的参数及状态,计算出当前车辆所需的扭矩值因此,整车控制器要合理解释驾驶员操作,接收整车各子系统的反馈信息,为驾驶员提供决策反馈,对整车各子系统发送指令,以实现车辆的正常行驶。
车辆的行驶状态(加速、制动、转向)根据不同的驾驶方式后车辆就会呈现出不同的驾驶性能(如运动、舒适、经济等)。控制系统能够更大程度上满足不同驾驶员的需求,同时也可提高车辆在不同驾驶模式下的操纵性和稳定性。模式控制系统通过操纵开关下达指令,主控单元接收开关的指令后再把指令通过can网络发送给各子系统,其中主要参与响应的子系统有发动机控制系统、变速器控制系统、分动器控制系统、车辆稳定性控制系统、电动助力转向系统、人机交互系统。在不同的驾驶模式下,各子系统通过相应的响应协同工作,使车辆呈现出不同的驾驶性能。
电动汽车除了整车控制器外,还有电机控制器、电池管理系统等各种子控制系统。这些控制器之间需要通信。整车控制器通过CAN通讯网络连接各分控系统,协调管理整个通讯网络。整车控制器是电动汽车众多控制器中的一个,是CAN网络总线中的一个节点。在整车网络管理中,整车控制器是信息控制的中心,负责信息的组织与传输,网络状态的监控,网络节点的管理以及网络故障的诊断与处理。
它就是在电动车制动或惯性滑行时,回收释放出的多余能量,通过发电机转化为电能,并储存到蓄电池中,以供车辆后续行驶使用。这一过程中,电动车的电机作为能量转换装置,动力电池则作为储能装置,共同协作完成能量的回收与再利用。
整车控制器根据行车速度、驾驶员制动意图、动力电池组的荷电状态进行综合判断,若达到回收制动能量的条件,整车控制器即会向电机控制器发送控制指令,使驱动电机在发电状态,将制动能量转变成电能存储到动力电池中。制动能量回收原则是不干预液压系统ABS的工作,优先级低于ABS。
通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其他车载能源动力系统(如空调、电动泵等)的协调和管理,可以提高整车能量利用效率,延长续驶里程。在纯电动汽车中,动力电池除了给驱动电机供电以外,还要给电动附件供电,因此,为了获得最大的续驶里程,整车控制器将负责整车的能量管理,以提高能量的利用率。在电池的SOC值比较低的时候,整车控制器将对某些电动附件发出指令,限制电动附件的输出功率,来增加续驶里程。
实车运行中,任何部件都可能产生差错,从而导致器件损坏甚至危及车辆安全。整车控制器要能对汽车各种可能的故障进行分析处理,这是保证汽车行驶安全的必备条件。连续监视整车各控制系统,进行故障诊断,并及时进行相应的安全保护处理。根据传感器的输入及其它通过CAN总线通讯到电机、电池、充电机等信息,对各种故障进行判断、等级分类、报警显示、存储故障码等。
整车控制器通过直接采集信号和接收CAN总线上的数据的方式获得车辆运行的实时数据,包括速度、电机的工作模式、转矩、转速、电池的剩余电量、总电压、单体电压、电池温度和故障等信息,然后通过CAN总线将这些实时信息发送到车载信息显示系统进行显示。此外整车控制器定时检测CAN总线上各模块的通信,如果发现总线上某一节点不能够正常通信,则在车载信息显示系统上显示该故障信息,并对相应的紧急情况采取合理的措施进行处理,防止极端状况的发生,使得驾驶员能够直接、准确地获取车辆当前的运行状态信息。
整车控制器对车辆的状态进行实时检测并且将各个子系统的信息发送给车载信息显示系统,其过程是通过传感器和CAN总线,检测车辆状态及其各子系统状态信息,通过组合显示仪表,将状态信息和故障诊断信息经过显示仪表显示出来。
显示内容包括:车速、里程、电机转速、温度、电池电量、电压、电流、故障信息等。
(来源:新能源汽车电控开发与测试)
免责声明: 本公众号内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本公众号出现的信息均仅供参考,概不负任何法律责任。如本公众号中的文字、图片、视频或链接内容可能涉嫌侵权或存在不实,可及时向本公众号提出书面通知或说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本公众号在收到上述文件后,将尽快处理。
……
篇幅限制,仅展示部分资料
如欲 获取完整版PDF文件 , 如下方式:
全套资源领取
方式1
长按二维码
加入星球
10T资源,尽情下载
(资源实时更新,本资源已同步至知识星球)
有其他资源需求及问题欢迎在星球提问
方式2
长按二维码回复: 报告
#重磅推荐#
绿色通道,报告一键下载!
需要批量下载和及时更新最新汽车行业 学习资料、技术资料、行业报告 的朋友,可以加入我们的知识星球,大量的中外文精品汽车行业资料将会优先分享到知识星球中,加入即可下载全部报告。
知识星球 加入请扫描以下二维码
↓↓↓
长按二维码
加入知识星球
10T资源,随时下载
PS:加入知识星球,可免费下载所有发布的报告,包括16大板块,详细清单如下:
以下为 历史发布报告, 星球↓内 免费下载
(更多报告请 星球↑ 内按关键词搜索)
【报告6601】ID.4、Model Y、Mach E电子电气架构对比
【报告6629】国内外混动技术介绍及对标分析(32页可下载)
【报告6661】2021麦肯锡中国汽车行业CEO特刊-194页
【报告726】ADAS和自动驾驶的现状和技术路径(39页可下载)
【报告763】长安汽车Low_frequency_nvh_cae(85页可下载)
【报告794】北汽新能源汽车轻量化设计与评价(31页可下载)
【报告795】上汽自主品牌车身轻量化设计现状及展望(18页可下载)
【报告821】2021中国商用车后市场白皮书(19页可下载)
【报告836】HUD全产业链深度解析智能座舱(38页可下载)
【报告8706】同济大学:自动驾驶-数据如何驱动智能化出行生态的变革(27页PDF下载)
【报告872】深度解析:电池管理系统(BMS)工作原理(21页可下载)
【报告883】ADAS自动驾驶架构算法技术路线(40页可下载)
【报告918】奥迪A8 R744二氧化碳系统(37页可下载)
【报告6106】中国汽车智能车联现状及功能研究报告(21页可下载)
【报告6111】中国氢能源及燃料电池产业白皮书(15页可下载)
【报告6115】动力电池全生命周期资产运营管理研究报告(105页可下载)
【报告6116】芯片短缺对汽车行业影响【卡达克】(41页可下载)
【报告6117】车企数据资产及业务价值实现白皮书(58页可下载)
【报告6119】SiC车用点击控制器研发进展-中国科学院电工所研究部主任温旭辉(45页可下载)
【报告6121】特斯拉Model3整车轻量化技术分析(14页可下载)
【报告6123】汽车芯片分析(应用|市场规模|趋势)(17页可下载)
【报告6124】全球26家汽车零部件企业2020年业绩(可下载)
【报告6127】全球半导体封测厂排名(附近年来全球新增封测厂)(可下载)
【报告6128】MiniLED 产业链全景解析(17页可下载)
【报告6129】华为鸿蒙操作系统深度研究报告(94页可下载)
【报告6131】智能网联汽车信息物理系统参考架构2.0-CICV(169页可下载)
【报告6134】6种最常用恒流源电路的分析与比较(7页可下载)
【报告6136】深度剖析:IGBT的结构与工作原理(8页可下载)
【报告6137】这17个PCB布局的知识点你不得不看(15页可下载)
【报告6139】电压kV为什么k要小写,原因你知道吗?(20页可下载)
【报告6143】碳中和及可持续发展高管洞察-施耐德电气(37页可下载)
【报告6144】碳中和报告:碳达峰全景图,新目标、新结构、新机遇(55页可下载)
【报告6146】大众MEB电动汽车深度研究报告(36页可下载)
【报告6148】丰田汽车市场竞争力分析报告2021版(40页可下载)
【报告6149】比亚迪乘用车的布局演变与战术分析(53页可下载)
【报告6151】特斯拉Model3整车轻量化技术分析(15页可下载)
【报告6153】MPV市场深度解读-洞察报告2021版(22页可下载)
【报告6158】乘用车企业平均燃料消耗量与新能源汽车积分并行管理实施情况年度报告(21页可下载)
【报告6160】中国汽车后市场渠道数字化营销(17页可下载)
【报告6164】华为汽车BU业务布局及分析框架(90页可下载)
【报告6165】华为全场景分布式鸿蒙系统详细介绍(37页可下载)
【报告6166】商用车智能化发展路径与解决方案(28页可下载)
【报告6168】智能座舱市场与技术发展趋势研究白皮书(52页可下载)
【报告6169】智能网联汽车高精度卫星定位白皮书2020年版(153页可下载)
【报告6170】主要科技公司智能交通市场竞争力分析报告(43页可下载)
【报告6177】2030碳达峰和2060碳中和再造企业可持续发展创新力(31页可下载)
【报告6180】节能与新能源汽车技术路线图2.0(42页可下载)
【报告6186】IEA-全球电动汽车政策研究(17页可下载)
【报告6188】2030年新能源汽车电池循环经济研究报告(可下载)
【报告6190】最佳的混动动力总成配置是什么样的?(34页可下载)
【报告6192】新能源热管理分析报告:ModelY,P7(2021版)(27页可下载)
【报告6193】轮胎特性在整车开发中的作用及要求(18页可下载)
【报告6194】电气化卡车:没有单一的引爆点或技术(24页可下载)
【报告6196】Global_EV_Outlook_2021(59页可下载)
【报告6197】美国智库报告对我国新能源汽车产业发展的启示(可下载)
【报告6200】2021吉利汽车智能化深度研究报告(44页可下载)
【报告6201】2021比亚迪半导体公司业务研究报告(34页可下载)
【报告6202】2021年长安汽车公司战略转型与营销渠道变革分析报告(28页可下载)
【报告6203】现代起亚,韩国汽车工业及同文化企业并购研究(40页可下载)
【报告6204】智能座舱市场与技术发展趋势研究白皮书(52页可下载)
【报告6206】汽车智能化的商业化路径、产业演进及投资机会(67页可下载)
【报告6207】汽车OEM智舱智驾能力分析:蔚来小鹏特斯拉(54页可下载)
【报告6213】Stellantis ev_day_2021(57页可下载)
【报告6214】海外电动车行业专题:全球PEM燃料电池技术(30页可下载)
【报告6216】全球燃料电池汽车在道路运输行业的运用研究(41页可下载)
【报告6218】电动汽车电池材料成本上涨对电池供应链的影响(47页可下载)
【报告6239】智能网联汽车预期功能安全前沿技术研究报告(101页可下载)
【报告6240】罗兰贝格中国行业趋势报告:2021年度特别报告(87页可下载)
【报告6241】麦肯锡汽车网络安全:应对挑战(35页可下载)
【报告6242】直销或代理:汽车未来销售模式探析(17页可下载)
【报告6247】车控操作系统总体技术要求研究报告(51页可下载)
【报告6248】超级电容在新能源汽车中的应用(26页可下载)
【报告6251】软件定义汽车—苹果+小米造车前瞻(50页可下载)
【报告6253】MOS管驱动电路设计,如何让MOS管快速开启和关闭?(可下载)
【报告6256】PCB回流是什么? 高速信号回流路径分析(可下载)
【报告6263】更正!全球主要车载毫米波雷达企业(TOP 70)
【报告6271】电源PCB布板与EMC的到底有哪些“不为人知”的秘密
【报告6272】资深EMC工程师总结:EMC整改流程及常见问题
【报告6274】2020-2021年国产特斯拉供应商大盘点!
【报告6275】从PN结到IGBT一条龙【易懂】(含二三极管、MOS)
【报告6279】特斯拉 AI DAY PPT(169页可下载)
【报告6280】自动驾驶出租车Robotaxi行业深度研究报告(55页可下载)
【报告6281】中国智能网联汽车数据安全研究报告(30页可下载)
【报告6282】AUTOSAR中国用户组的应用实践(26页可下载)
【报告6283】2021理想汽车最新深度研究报告(51页可下载)
【报告6287】拜登政府2022财年预算案(英)(71页可下载)
【报告6288】tesla-impact-report(95页可下载)
【报告6301】中国智能汽车软件产业发展趋势洞见(50页可下载)
【报告6305】智能网联汽车预期功能安全前沿技术研究报告(127页可下载)
【报告6306】智能网联汽车信息安全政策法规现状及监管方向研究报告(31页可下载)
【报告6308】中国汽车智能网联产品体验及用户需求研究(40页可下载)
【报告6310】新能源汽车换电站产业研究报告(25页可下载)
【报告6311】汽车行业从特斯拉_OTA_说起:汽车电子电气架构根本性变化下的投资机会分析(12页可下载)
【报告6312】华为智能汽车解决方案2030(36页可下载)
【报告6313】华为数据中心自动驾驶网络白皮书(28页可下载)
【报告6314】华为全球能源转型及零碳发展白皮书(58页可下载)
【报告6317】比亚迪乘用车的布局演变与战术分析(53页可下载)
【报告6321】德国工业4.0介绍(rami40)(22页可下载)
【报告6322】比亚迪、广汽、长城深度市场解读(27页可下载)
【报告6330】碳中和目标下的企业发展新路径(27页可下载)
【报告6331】全球车企的模块化平台分析报告(52页可下载)
【报告6333】中国领先电驱动产业链企业TOP50白皮书2021版(78页可下载)
【报告6334】2021小鹏汽车深度解析报告(47页可下载)
【报告6337】EV整车平台高电压化分析报告(50页可下载)
【报告6339】智能电动汽车行业十年十大预测(61页可下载)
【报告6346】巡航控制系统--汽车电子控制技术(30页可下载)
【报告6347】自适应巡航控制系统(ACC)(14页可下载)
【报告6360】汽车安全舒适系统--汽车电气设备(61页可下载)
【报告6369】 汽车的安全气囊系统的工作原理(53页可下载)
【报告6374】自动驾驶行业深度研究报告之传感器与芯片专题(98页可下载)
华商报 · 张伟丽再度卫冕金腰带! 3 天前 |
华商报 · 张伟丽再度卫冕金腰带! 3 天前 |
36氪 · e保养宣布完成C轮首笔1.5亿元融资,未来将继续建设线上+线下连锁+配件供应链模式 8 年前 |
上海发布 · 【探索】片片枫叶情~~沪上8处最美赏枫处盘点 8 年前 |
萧秋水 · 萧秋水小盆友,祝你九岁生日快乐! 8 年前 |
程序员大咖 · “易语言”偷跑流量恶意软件分析 7 年前 |
江门广播电视台 · 【真的】江门人快看!这里有优惠券免费领取!手慢无! 7 年前 |