2024 年谷歌博士奖学金(Google PhD Fellowship)获奖名单公布了。该奖项旨在奖励在计算机科学等前瞻科研领域表现优异的年轻学者,奖学金用于直接支持攻读博士学位,并提供与谷歌研究导师合作的机会。
根据 2024 年谷歌博士生奖学金项目名单显示,今年共有 85 人获奖,分为 13 个方向,Datawhale 整理了完整名单:
以下为部分入选华人博士生介绍:
方向一:算法与理论
Sun Yan,新加坡国立大学
Sun Yan 是新加坡国立大学 (NUS) 计算机学院信息系统专业博士生,导师是 Stanley Kok 教授。Sun Yan 本科毕业于香港中文大学(深圳)。
Sun Yan 的研究兴趣是机器学习中的算法及其应用,还研究过计算机图形学,例如图内核、异常检测。
个人主页:https://mathildasunyan.wixsite.com/academic-hub
吕欣,加州大学伯克利分校
吕欣是加州大学伯克利分校博士生,导师是 Avishay Tal 和 Jelani Nelson。吕欣本科毕业于清华大学交叉信息科学研究所(姚班)。
吕欣的研究兴趣主要在于理论计算机科学,涉及伪随机性、计算复杂度和差分隐私方面的问题。
个人主页:https://people.eecs.berkeley.edu/~xinlyu/
方向二:健康与生物科学
Chang Kao Jung,阳明交通大学
Chang Kao Jung 为阳明交通大学医学博士,主要研究方向为大数据、AI、基因遗传学等领域。
Hanjia Lyu,罗彻斯特大学
Hanjia Lyu 是罗彻斯特大学计算机科学系四年级博士生,指导老师是罗杰波教授。此前,他在罗彻斯特大学获得了数据科学硕士学位,在复旦大学获得了学士学位,主要研究方向包括健康信息学,行为科学等领域。
个人主页:https://brucelyu17.github.io/
Jason Yang,加州理工学院
Jason Yang 为加州理工学院博士生,指导老师是 Frances Arnold 教授和 Yisong Yue 教授,他本科毕业于耶鲁大学。主要研究方向为蛋白质工程、机器学习等领域。
谷歌学术:https://scholar.google.com/citations?user=SsDR5GkAAAAJ&hl=en
Kara Liu,斯坦福大学
Kara Liu 目前是斯坦福大学计算机科学博士生,指导老师是 Russ Altman 教授。她的研究重点是开发和应用机器学习方法,以实现公平有效的医疗保健。
在此之前,Kara Liu 在加州大学伯克利分校获得计算机科学学士学位,还曾在 Pieter Abbeel 和 Aviv Tamar 的指导下从事长视界视觉规划和表征学习的研究。
个人主页:https://karamarieliu.github.io/
Lingtong (Tony) Xu,多伦多大学
Lingtong (Tony) Xu 博士毕业于加拿大多伦多大学,本科毕业于不列颠哥伦比亚大学。
领英主页:https://www.linkedin.com/in/tony-lt-xu/?originalSubdomain=ca
方向三:人机交互与可视化
Erzhen Hu,弗吉尼亚大学
Erzhen Hu 为弗吉尼亚大学计算机科学博士生,导师是 Seongkook Heo 教授。在此之前,她获得了弗吉尼亚大学统计学硕士学位和上海大学学士学位。Erzhen Hu 的研究包括通过多模态智能体增强人机交互、利用 LLM 以及将先进的 2D 和 3D 计算机视觉方法应用于多用户场景、 XR 应用,探索人机通信范式。
个人主页:https://erzhenh.com/
曹宇舟是新加坡南洋理工大学计算与数据科学学院博士生,研究方向为统计学习及其在可信机器学习中的应用,导师是安波教授。曹宇舟本科毕业于中国农业大学。
个人主页:https://yzcao-nkg.github.io/
Cheng-Yu Hsieh 是华盛顿大学计算机科学与工程专业的博士生,之前,他在台湾大学获得学士和硕士学位。Cheng-Yu Hsieh 的研究目标是借助数据和模型扩展在当今的大规模环境中更加高效和有效,实现人工智能开发的民主化。
个人主页:https://chengyuhsieh.github.io/
Eric Zhao 是加州大学伯克利分校计算机科学博士生,导师是 Nika Haghtalab 和 Michael I. Jordan。
Eric Zhao 的研究兴趣在于多目标机器学习的算法和数学基础。
个人主页:https://eric-zhao.com/
Haodong Lu 是新南威尔士大学博士生,导师是 Dong Gong 和 Lina Yao。
Haodong Lu 的研究兴趣集中在理解和适应数据分布变化,特别关注分布外 (OOD) 检测和持续学习,致力于开发强大的计算机视觉和多模态模型,能够随着时间的推移有效地检测和适应新的数据分布。
Kaiwen Wang 目前是康奈尔大学的博士生,在进入研究生院之前,Kaiwen 在 Meta AI 工作,负责构建推荐算法模型和 ReAgent 平台。他的研究领域包括强化学习、因果关系和大型语言模型。