专栏名称: 云头条
引领科技变革,连接技术与商业
目录
相关文章推荐
罗辑思维  ·  DeepSeek+华为,能不能超越英伟达和O ... ·  昨天  
界面新闻  ·  微信支持在电脑端收红包了! ·  昨天  
51好读  ›  专栏  ›  云头条

首个 AIOS 平台重磅发布:新一代 AI 基础设施来了

云头条  · 公众号  ·  · 2024-08-06 23:27

正文

新一代 IT 基础设施,将从通用算力+云平台转型为 AI 算力+AIOS 平台。
AI正在重构世界。正如世界是立体的,AI 重构也 正从多维度开启: 基础设施重构,业务应用重构,交互模式重构,数据价值重构,生态系统重构……
2023 年 6 月,英伟达市值首次突破万亿美元,率先引爆基础设施重构的全球化浪潮。随着数据中心转向智算中心,硬件基础设施从通用算力走向 AI 算力,软件基础设施也将转型为新一代 AI 基础设施——AI 操作系统(AIOS)平台。

新一代 AI 基础设施 AIOS 平台

AI企业级商用的道路并不平坦。
2022 年 11 月,‌OpenAI ChatGPT-3‌ 开启了生成式 AI(GenAI)走向商用的新时刻。
据 IDC 预测,到 2025 年仅仅三年时间,全球 2000 强企业就会把超过 40% 的核心 IT 支出用于 AI 相关计划,千亿级企业 AI 大市场已徐徐拉开。
但另一方面,‌OpenAI ChatGPT 企业版收入占比仅为 21%,且有外媒报道 2024 年 OpenAI 或将面临 50 亿美元巨额亏损。

中国 AI 企业级市场则面临更多挑战。

算力层: 与国外以英伟达为主的AI算力不同,中国市场呈现多架构多品牌的AI算力格局。 企业不仅仍旧面临算力稀缺,如果各异构算力之间无法互通,还会形成硬件算力竖井。

模型层: 产品导向必将转向场景导向。 随着训推模型向场景化发展,不同场景下模型分工将更为专业,大模型呈垂直化趋势,在企业侧部署易于发展为模型生态竖井。

运营层: “百模大战”迅速走向推理应用,亟待在解耦算力竖井和模型竖井的基础上,实现跨平台的计量计费,迅速提升企业 AI 普及率。

“AI 任务的多样性要求不同的模型处理,数据的多样性要求多模态能力,算力的异构性要求分布式多架构并行,模型的不断演进要求企业灵活更迭新的AI模型……面对企业AI的复杂与困境,亟待能够破局的新一代AI基础设施。”

云轴科技ZStack创始人兼CEO张鑫认为,“一个能够同时解耦算力竖井和模型竖井、全域感知动态调度、实现自服务运营的新一代AI基础设施AIOS平台,成为提升企业AI渗透率的关键一环。”

作为 AI 生态系统中的新型形态,AIOS 平台应该如何定义,包括哪些关键要素?
与模型即服务(MaaS)不同,AIOS 是专门为 AI 应用而设计的操作系统平台,它不仅可以高效管理硬件算力资源,还内置 AI 引擎解耦不同模型、调度不同算力、执行各种 AI 任务,通过自服务运营模式降低 AI 应用门槛,提高 AI 应用效率。
ZStack 张鑫认为,作为新一代 AI 基础设施,AIOS 平台需要在安全可控、持续迭代的基础上,同时在算力层、模型层、运营层三大层面实现以 AI 为核心的重构:

算力层: 从运维视角,以AI为核心进行算力资源预测、精分、调度,降低AI应用成本;

模型层: 从开发视角,以AI应用框架进行AI训推模型无缝集成与生命周期管理,优化AI应用性能;

运营层: 从业务视角,提供多智算中心、多集群、多租户的按量计费运营,实现AI自服务化。

8 月 6 日,云轴科技 ZStack 正式发布首个 AIOS 平台“智塔“,期望通过同时解耦算力竖井和模型竖井,优化AI应用性能和成本,解锁千亿级企业AI市场。

算力层: ZStack AIOS 平台“智塔“的算力精分调度平台,支持 NVIDIA、AMD、Intel、海光、华为昇腾、寒武纪、燧原、天数智芯、太初元碁、壁仞、摩尔线程、沐曦等中国市场上的主流品牌和几十种 AI 芯片型号,实现异构算力协同不同AI 模型之间的优化路由。

模型层: ZStack AIOS 平台”智塔”的动态模型自适应平台,可以支持生成式AI(GenAI)、自然语言处理 (NLP)、计算机视觉、机器学习(ML)、深度学习(DL)以及多模态AI,并支持Llama、Gemma、通义千问Qwen、智谱ChatGLM、百川Baichuan、零一万物Yi、OLMo、GPT-NeoX等数百种开源大模型,实现模型压缩与性能优化,模型选型与生命周期管理,训推高效部署与自适应调度,达到跨软硬件的全面性能优化。

运营层: ZStack AIOS 平台”智塔”的全域感知自服务平台,可以进行多租户隔离和动态资源配额管理,实现跨智算中心、跨集群的全域感知统一调度,提供按量计费的动态训推服务,具备可视化统一门户,弹性跨域容错,实现精细化的自服务运营体系。

算力层:提升异构算力效率,破局算力稀缺难题

“AI的尽头是电力。“这一观点其实是AI芯片全球性规模扩张的展现。随着训推竞赛展开,千卡规模、万卡规模不断升级,AI算力资源稀缺且成本高昂。
在中国企业AI应用中,面对异构算力与多种模型选择,企业首要的需求是快速部署和高效运维AI模型。目前,AI算力池化替代异构算力竖井已成趋势,企业需要一个AIOS平台解决模型高效部署运维难题,避免为单个模型部署单一AI算力形成竖井架构,将异构算力池化并实现协同调度,使得企业在模型快速部署的同时,高效利用异构算力资源,显著降低算力成本。
ZStack AIOS平台“智塔”具备裸金属、虚机与容器多引擎能力,通过GPU切割精分量化,对异构AI算力实现可达1%的量化管理,大幅降低算力成本。算力层的另一大核心在于,在AI算力精分量化基础之上,通过分布式协同调度能力,实现异构算力的统一管理和动态调度,达到算力的精细化资源复用,进一步降低算力成本。

模型层:多模型框架集成,MaaS服务灵活高效

《IDC FERS Survey Wave》2024 年发布的最新调研显示,48% 的 GenAI 都将在企业本地部署,随着 AI 从训练走向推理,行业企业应用成为真正加速 AI 商用化进程的关键。






请到「今天看啥」查看全文