现在,机器学习的趋势从传统方法中的简单模型 + 少量数据(人工标
一种视频的快速搜索技术,比SIFT还厉害。基于网格的运动统计,用于快速、超鲁棒的特征匹配(办公椅演示),论文《Grid-based Motion
Statistics for Fast, Ultra-robust Feature Correspondence》将平滑度约束引入特征匹配是已知的可以实现超强鲁棒匹配。 然而,这样的匹配方案既复杂又缓慢,使得它们不适合于视频应用。
本文提出了GMS(基于网格的运动统计),一种简单的方法,将运动平滑度作为一个统计量,进行局部区域的匹配。GMS可以将高匹配数字转换成高匹配质量。
这提供了一个实时、超强的匹配系统。 评估低质量、模糊的视频和广泛基线显示,GMS始终如一地优于其他实时匹配器。
摘要:
Incorporating smoothness constraints into feature matching is known
to enable ultra-robust matching. However, such formulations are both
complex and slow, making them unsuitable for video applications. This
paper proposes GMS (Grid-based Motion Statistics), a simple means of
encapsulating motion smoothness as the statistical likelihood of a
certain number of matches in a region. GMS enables translation of high
match numbers into high match quality. This provides a real-time,
ultra-robust correspondence system. Evaluation on videos, with low
textures, blurs and wide-baselines show GMS consistently out-performs
other real-time matchers and can achieve parity with more sophisticated,
much slower techniques.
项目主页:
http://jwbian.net/gms
原文链接:
http://weibo.com/5501429448/F4B06wvAJ?ref=home&rid=8_0_202_2669681233773691966&type=comment