专栏名称: AI科技大本营
迎来到AI科技大本营。这里汇集了优秀的AI学习者,技术大咖和产业领袖;提供接地气的实战课程。在这里和优秀的人一起成长。
目录
相关文章推荐
爱可可-爱生活  ·  【EasyR1:基于veRL的高效、可扩展多 ... ·  10 小时前  
爱可可-爱生活  ·  【DigiQ:用AI驱动设备控制的新方法,让 ... ·  10 小时前  
爱可可-爱生活  ·  【[328星]Magma:微软推出的多模态A ... ·  2 天前  
爱可可-爱生活  ·  【[122星]funtrace:一款为C/C ... ·  3 天前  
51好读  ›  专栏  ›  AI科技大本营

如何用CNN玩转AlphaGo版的五子棋?

AI科技大本营  · 公众号  · AI  · 2020-03-12 16:48

正文


作者 | 李秋键
责编| 郭芮
出品| CSDN(ID:CSDNnews)
近几年来,AI在游戏方面的发展如火如荼,尤其是自从阿法狗AI围棋战胜围棋之后,更是引起了AI发展的狂潮,同时也引起了很多AI游戏的应用与深化发展。其实游戏中的AI有非常悠久的历史,相当多的游戏都是围绕着对抗“敌人”展开,而这个“敌人”,就是AI,其中包含一些行为方式固定没有一丁点变化的低级AI,也有一些另外的随机因素高级一点的AI,不过这里的AI本质上是一段固定的程序脚本,如果玩家掌握到其中的规律,游戏性就会瞬间降低。
而深度学习的AI版本却是不同,他与多个位置的参数与多方向的选择,拓展了其中AI的智能性,让玩家找到其中的规律性变得基本不可能,这也是深度学习的重要意义之一。今天,我们就将利用CNN实现智能五子棋。


实验前的准备

首先我们使用的python版本是3.6.5。所测试的系统有windows10,windows7,Linux系统以及苹果系统。从这点也可以修剪python多平台和多扩展性,易于迁移的优点。
所使用的的python库有tkinter,其目的是用于规划棋盘布局,实现下棋功能;SGF文件用于读取棋谱并加载训练模型;os库用于读取和存储本地文件;TensorFlow库用于建立CNN网络模型以及训练等事项。

棋盘的建立

1.初始化棋盘:
其中各参数设定意义如下:初始化:someoneWin:标识是否有人赢了;humanChessed:人类玩家是否下了;IsStart:是否开始游戏了;玩家:玩家是哪一方;玩法:模式,和机器人下棋,还是和ai下棋;bla_start_pos:黑棋开局时下在正中间的位置;bla_chessed:保存黑棋已经下过的棋子;whi_chessed:保存白棋已经下过过的棋子;board:棋盘;窗口:窗口;var:用于标记选择玩家颜色的一个变量;var1:用于标记选择robot或ai的一个变量;可以:画布,用于绘制出棋盘;net_board:棋盘的点信息;robot:机器人;sgf:处理棋谱;cnn:cnnc神经网络。
其中代码如下:
def __init__(self):        self.someoneWin = False        self.humanChessed = False        self.IsStart = False        self.player = 0        self.playmethod = 0        self.bla_start_pos = [235, 235]        self.whi_chessed = []        self.bla_chessed = []        self.board = self.init_board()        self.window = Tk()        self.var = IntVar()        self.var.set(0)        self.var1 = IntVar()        self.var1.set(0)        self.window.title("myGoBang")        self.window.geometry("600x470+80+80")        self.window.resizable(0, 0)        self.can = Canvas(self.window, bg="#EEE8AC", width=470, height=470)        self.draw_board()




    
        self.can.grid(row=0, column=0)        self.net_board = self.get_net_board()        self.robot = Robot(self.board)        self.sgf = SGFflie()        self.cnn = myCNN()        self.cnn.restore_save()    def init_board(self):        """初始化棋盘"""        list1 = [[-1]*15 for i in range(15)]        return list1
2.棋盘布局:
其主要功能就是画出棋盘和棋子。具体代码如下:
def draw_board(self):        """画出棋盘"""        for row in range(15):            if row == 0 or row == 14:                self.can.create_line((25, 25 + row * 30), (445, 25 + row * 30), width=2)            else:                self.can.create_line((25, 25 + row * 30), (445, 25 + row * 30), width=1)        for col in range(15):            if col == 0 or col == 14:                self.can.create_line((25 + col * 30, 25), (25 + col * 30, 445), width=2)            else:                self.can.create_line((25 + col * 30, 25), (25 + col * 30, 445), width=1)        self.can.create_oval(112, 112, 118, 118, fill="black")        self.can.create_oval(352, 112, 358, 118, fill="black")        self.can.create_oval(112, 352, 118, 358, fill="black")        self.can.create_oval(232, 232, 238, 238, fill="black")        self.can.create_oval(352, 352, 358, 358, fill="black")def draw_chessed(self):        """在棋盘中画出已经下过的棋子"""        if len(self.whi_chessed) != 0:            for tmp in self.whi_chessed:                oval = pos_to_draw(*tmp[0:2])                self.can.create_oval(oval, fill="white")        if len(self.bla_chessed) != 0:            for tmp in self.bla_chessed:                oval = pos_to_draw(*tmp[0:2])                self.can.create_oval(oval, fill="black")    def draw_a_chess(self, x, y, player=None):        """在棋盘中画一个棋子"""        _x, _y = pos_in_qiju(x, y)        oval = pos_to_draw(x, y)        if player == 0:            self.can.create_oval(oval, fill="black")            self.bla_chessed.append([x, y, 0])            self.board[_x][_y] = 1




    
        elif player == 1:            self.can.create_oval(oval, fill="white")            self.whi_chessed.append([x, y, 1])            self.board[_x][_y] = 0        else:            print(AttributeError("请选择棋手"))        return
3.判断胜负条件:
根据是否是五子连在一线断定输赢。
def have_five(self, chessed):        """检测是否存在连五了"""        if len(chessed) == 0:            return False        for row in range(15):            for col in range(15):                x = 25 + row * 30                y = 25 + col * 30                if self.check_chessed((x, y), chessed) == True and \                                self.check_chessed((x, y + 30), chessed) == True and \                                self.check_chessed((x, y + 60), chessed) == True and \                                self.check_chessed((x, y + 90), chessed) == True and \                                self.check_chessed((x, y + 120), chessed) == True:                    return True                elif self.check_chessed((x, y), chessed) == True and \                                self.check_chessed((x + 30, y), chessed) == True and \                                self.check_chessed((x + 60, y), chessed) == True and \                                self.check_chessed((x + 90, y), chessed) == True and \                                self.check_chessed((x + 120, y), chessed) == True:                    return True                elif self.check_chessed((x, y), chessed) == True and \                                self.check_chessed((x + 30, y + 30), chessed) == True and \                                self.check_chessed((x + 60, y + 60), chessed) == True and \                                self.check_chessed((x + 90, y + 90), chessed) == True and \                                self.check_chessed((x + 120, y + 120), chessed) == True:                    return True                elif self.check_chessed((x, y), chessed) == True and \                                self.check_chessed((x + 30, y - 30), chessed) == True and \                                self.check_chessed((x + 60, y - 60), chessed) == True and \                                self.check_chessed((x + 90, y - 90), chessed) == True and \                                self.check_chessed((x + 120, y - 120), chessed) == True:                    return True                else:                    pass        return False    def check_win(self):




    
        """检测是否有人赢了"""        if self.have_five(self.whi_chessed) == True:            label = Label(self.window, text="White Win!", background='#FFF8DC', font=("宋体", 15, "bold"))            label.place(relx=0, rely=0, x=480, y=40)            return True        elif self.have_five(self.bla_chessed) == True:            label = Label(self.window, text="Black Win!", background='#FFF8DC', font=("宋体", 15, "bold"))            label.place(relx=0, rely=0, x=480, y=40)            return True        else:            return False
得到的UI界面如下:

深度学习建模

1.初始化神经网络:
其中第一层和第二层为卷积层,第四层为全连接层,然后紧接着连接池化和softmax。和一般的CNN网络基本无异。基本参数见代码,如下:
def __init__(self):        '''初始化神经网络'''        self.sess = tf.InteractiveSession()        # paras        self.W_conv1 = self.weight_varible([5, 5, 1, 32])        self.b_conv1 = self.bias_variable([32])        # conv layer-1        self.x = tf.placeholder(tf.float32, [None, 225])        self.y = tf.placeholder(tf.float32, [None, 225])        self.x_image = tf.reshape(self.x, [-1, 15, 15, 1])        self.h_conv1 = tf.nn.relu(self.conv2d(self.x_image, self.W_conv1) + self.b_conv1)        self.h_pool1 = self.max_pool_2x2(self.h_conv1)        # conv layer-2        self.W_conv2 = self.weight_varible([5, 5, 32, 64])        self.b_conv2 = self.bias_variable([64])        self.h_conv2 = tf.nn.relu(self




    
.conv2d(self.h_pool1, self.W_conv2) + self.b_conv2)        self.h_pool2 = self.max_pool_2x2(self.h_conv2)        # full connection        self.W_fc1 = self.weight_varible([4 * 4 * 64, 1024])        self.b_fc1 = self.bias_variable([1024])        self.h_pool2_flat = tf.reshape(self.h_pool2, [-1, 4 * 4 * 64])        self.h_fc1 = tf.nn.relu(tf.matmul(self.h_pool2_flat, self.W_fc1) + self.b_fc1)        # dropout        self.keep_prob = tf.placeholder(tf.float32)        self.h_fc1_drop = tf.nn.dropout(self.h_fc1, self.keep_prob)        # output layer: softmax        self.W_fc2 = self.weight_varible([1024, 225])        self.b_fc2 = self.bias_variable([225])        self.y_conv = tf.nn.softmax(tf.matmul(self.h_fc1_drop, self.W_fc2) + self.b_fc2)        # model training        self.cross_entropy = -tf.reduce_sum(self.y * tf.log(self.y_conv))        self.train_step = tf.train.AdamOptimizer(1e-3).minimize(self.cross_entropy)        self.correct_prediction = tf.equal(tf.argmax(self.y_conv, 1), tf.argmax(self.y, 1))        self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))        self.saver = tf.train.Saver()        init = tf.global_variables_initializer()  # 不存在就初始化变量        self.sess.run(init)    def weight_varible(self, shape):        '''权重变量'''        initial = tf.truncated_normal(shape, stddev=0.1)        return tf.Variable(initial)    def bias_variable(self, shape):        '''偏置变量'''        initial = tf.constant(0.1, shape=shape)        return tf.Variable(initial)    def conv2d(self, x, W):        '''卷积核'''        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')    def max_pool_2x2(self, x):        '''池化核'''        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
2.保存和读取模型:
def restore_save(self, method=1):        '''保存和读取模型'''        if method == 1:            self.saver.restore(self.sess, 'save\model.ckpt')            #print("已读取数据")        elif method == 0:            saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)            saver.save(self.sess, 'save\model.ckpt')            #print('已保存')
3.建立预测函数和训练函数:
def predition(self, qiju):        '''预测函数'''        _qiju = self.createdataformqiju(qiju)        pre = self.sess.run(tf.argmax(self.y_conv, 1), feed_dict={self.x: _qiju, self.keep_prob: 1.0})        point = [0, 0]        l = pre[0]        for i in range(15):            if ((i + 1) * 15) > l:                point[0






请到「今天看啥」查看全文